首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The need for Ca2+ in the inactivation of bacteriophage phi X174 by lipopolysaccharide from Escherichia coli C was confirmed. Ca2+ could be replaced almost completely by Na+, but the concentration of Na+ needed was greater by more than an order of magnitude. Other bivalent ions caused inactivation in the same way as Ca2+, and the degree of inactivation varied according to the ion. At 50% inactivation of bacteriophage, the relation between the concentrations of NaCl and of bivalent or tervalent ions (Mx+) fitted the conception that NaCl was neutralizing electrostatic repulsion between virus and lipopolysaccharide by an ionic-strength effect: that is, log[Mx+] varies inversely with square root[NaCl]. The variation in effect of bi- and ter-valent ions and the low concentration needed show that this is not an ionic-strength effect but likely to involve binding to more than one site.  相似文献   

2.
3.
4.
The behavior of the temperature-sensitive, penicillin-tolerant Escherichia coli mutant VC44 to endogenously induced autolysis by the bacteriophage phi X174 gene E product (gpE) was investigated. Expression of the cloned phi X174 lysis gene showed that cultures of strain VC44 grown at the restricted temperature were fully sensitive to endogenously induced autolysis. The results revealed that the modes of E. coli lysis induction by gpE and by penicillin differ and that the trigger mechanisms for autolysis depend greatly on the specific inducer used.  相似文献   

5.
6.
The insertion of a particular phi X DNA sequence in the plasmid pACYC177 strongly decreased the capacity of Escherichia coli cells containing such a plasmid to propagate bacteriophage phi X174. The smallest DNA sequence tested that showed the effect was the HindII fragment R4. This fragment does not code for a complete protein. It contains the sequence specifying the C-terminal part of the gene H protein and the N-terminal part of the gene A protein, as well as the noncoding region between these genes. Analysis of cells that contain plasmids with the "reduction sequence" showed that (i) the adsorption of the phages to the host cells is normal, (ii) in a single infection cycle much less phage is formed, (iii) only 10% of the infecting viral single-stranded DNA is converted to double-stranded replicative-form DNA, and (iv) less progeny replicative form DNA is synthesized. The reduction process is phi X174 specific, since the growth of the related G4 and St-1 phages was not affected in these cells. The effect of the recombinant plasmids on infecting phage DNA shows similarity to the process of superinfection exclusion.  相似文献   

7.
Bacteriophage phi X174 was inactivated by mitomycin C reduced with sodium hydrosulfite in the presence of cupric ions (Cu2+). 99% of the phage particles lost their plaque-forming abilities when incubated with 1.5 . 10(-4) M mitomycin C, 5.7 . 10(-4) M sodium hydrosulfite and 1.0 . 10(-4) M CuCl2 for 120 min at 37 degrees C in 0.05 M Tris--HCl buffer (pH 8.1). Sodium borohydride and thiol-reducing agents such as L-cysteine, 2-mercaptoethanol or dithiothreitol could not serve as a substitute for sodium hydrosulfite and other transition metal ions such as Fe2+, Fe3+, Mn2+, Co2+ and Zn2+ were of no effect. Inactivated phage sedimented at 114S just as intact phage, but phage DNA was degraded. Strand-scission was observed when phi X174 single-stranded DNA was directly reacted with mitomycin C reduced with sodium hydrosulfite in the presence of CuCl2. Phage inactivation was inhibited bycatalase, EDTA and several scavengers such as cysteamine, 2-aminoethylisothiuronium bromide HBr (AET), 4,5-dihydroxy-1,3-benzene-disulfonic acid (Tiron), or 1,4-diazabicyclo[2,2,2]octane (DABCO). These results suggest that free oxygen radicals and mitomycin C semiquinone radical generated during autoxidation of reduced mitomycin C in the presence of cupric ions cause the degradation of phy X174 DNA.  相似文献   

8.
Recombination of bacteriophage phi X174 was effectively promoted when the Red function of lambda was supplied by either co-infection with lambda or induction of lambda lysogens. Mutations in red alpha and red beta genes of lambda abolished recombination nearly completely, whereas a mutation in gam gene reduced it only slightly. The Red-promoted recombination of phi X174 occurred in recA, recB, and polA mutants as well as in wild-type strains of Escherichia coli. It was further stimulated when phi X174 mutants were irradiated with UV light before infection.  相似文献   

9.
A Witte  W Lubitz    E P Bakker 《Journal of bacteriology》1987,169(4):1750-1752
We examined the cellular effects after the expression of the cloned lysis gene E of bacteriophage phi X174. Chloramphenicol prevented lysis only when added within the first minute of derepression of E synthesis, indicating that a time lag of several minutes exists between the synthesis of the E protein and the onset of cell lysis. Experiments with protonophores showed the existence of a subsequent step dependent on proton motive force at about 3 to 5 min before lysis.  相似文献   

10.
The gene B protein (gpB) of bacteriophage phi X174 is required for prohead assembly and is removed from prohead during phage maturation. Protease activity was observed in isolated prohead which specifically cleaved gpB. Cleavage of gpB produced two fragments that had apparent molecular weights of 12,300 and 3,700 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino-terminal sequencing of the fragments confirmed that they resulted from the cleavage of gpB and identified the cleavage site as an Arg-Arg at amino acids 76 to 77 of the 120-amino-acid protein. gpB-specific protease activity was observed in both phi X174-infected and uninfected Escherichia coli extracts. This protease activity was localized to the outer-membrane fraction of uninfected cells. Protease activities present in the outer membrane and in isolated prohead produced identical fragments and had the same protease inhibition profile. The gpB-specific activity in uninfected cells was induced by growth at 42 degrees C and was inhibited by the protease inhibitors, 1,10-phenanthroline, EDTA, and N-ethylmaleimide.  相似文献   

11.
12.
Two infectious forms of bacteriophage phi X 174.   总被引:4,自引:2,他引:4       下载免费PDF全文
Infectious particles with S values of 114 and 132 were isolated from cells infected with bacteriophage phi chi 174. Electron micrographs of the 132S particle revealed a spherical structure with a diameter of about 40 nm. The 114S particle had spikelike projections and a diameter of about 32 nm. The 132S particles could be converted to 114S particles in vitro. However, pulse and pulse-chase experiments indicated no precursor-product relationship between these two particles in vivo.  相似文献   

13.
Energetic and permeability properties of Escherichia coli cells were determined prior to and during lysis caused by expression of the cloned gene E of bacteriophage phi X174. Before onset of cell lysis the transmembrane gradients for K+, Na+ or Mg2+/ions, the level of ATP and the membrane potential, were unaffected. All these parameters changed simultaneously at the time of lysis onset, as monitored by measurements of culture turbidity as well as by determining the various specifications over a period of 1 min. During cell lysis chromosomal DNA was fragmented whereas plasmid DNA was liberated in its intact supercoiled form. Cytoplasmic constituents were released almost entirely, as indicated by the activity of beta-galactosidase in the supernatant fraction of protein-E-lysed cells. Periplasmic enzymes were only found in limited amounts in the cell supernatant and most remained associated with the cell ghosts. Such ghosts exhibited no gross cell damage or morphological alterations when compared with intact E. coli by light microscopy. All parameters investigated indicated that protein-E-mediated lysis of E. coli is caused by the formation of a transmembrane tunnel structure through the envelope complex of the bacterium.  相似文献   

14.
A mutant (designated mec(-)) has been isolated from Escherichia coli C which has lost DNA-cytosine methylase activity and the ability to protect phage lambda against in vivo restriction by the RII endonuclease. This situation is analogous to that observed with an E. coli K-12 mec(-) mutant; thus, the E. coli C methylase appears to have overlapping sequence specificity with the K-12 and RII enzymes; (the latter methylases have been shown previously to recognize the same sequence). Covalently closed, supertwisted double-standed DNA (RFI) was isolated from C mec(+) and C mec(-) cells infected with bacteriophage phiX174. phiX. mec(-) RFI is sensitive to in vitro cleavage by R.EcoRII and is cut twice to produce two fragments of almost equal size. In contrast, phiX.mec(+) RFI is relatively resistant to in vitro cleavage by R.EcoRII. R.BstI, which cleaves mec(+)/RII sites independent of the presence or absence of 5-methylcytosine, cleaves both forms of the RFI and produces two fragments similar in size to those observed with R. EcoRII. These results demonstrate that phiX.mec(+) RFI is methylated in vivo by the host mec(+) enzyme and that this methylation protects the DNA against cleavage by R.EcoRII. This is consistent with the known location of two mec(+)/ RII sequences (viz., [Formula: see text]) on the phiX174 map. Mature singlestranded virion DNA was isolated from phiX174 propagated in C mec(+) or C mec(-) in the presence of l-[methyl-(3)H]methionine. Paper chromatographic analyses of acid hydrolysates revealed that phiX.mec(+) DNA had a 10-fold-higher ratio of [(3)H]5-methylcytosine to [(3)H]cytosine compared to phiX.mec(-). Since phiX.mec(+) contains, on the average, approximately 1 5-methylcytosine residue per viral DNA, we conclude that methylation of phiX174 is mediated by the host mec(+) enzyme only. These results are not consistent with the conclusions of previous reports that phiX174 methylation is mediated by a phage-induced enzyme and that methylation is essential for normal phage development.  相似文献   

15.
Escherichia coli VC30 is a temperature-sensitive mutant which is defective in autolysis. Strain VC30 lyses at 30 degrees C when treated with beta-lactam antibiotics or D-cycloserine or when deprived of diaminiopimelic acid. The same treatments inhibit growth of the mutant at 42 degrees C but do not cause lysis. Strain VC30 was used here to investigate the mechanism of host cell lysis induced by bacteriophage phi X 174. Strain VC30 was transformed with plasmid pUH12, which carries the cloned lysis gene (gene E) of phage phi X174 under the control of the lac operator-promoter, and with plasmid pMC7, which encodes the lac repressor to keep the E gene silent. Infection of strain VC30(pUH12)(pMC7) with phage phi X174 culminated in lysis at 30 degrees C. At 42 degrees C, intracellular phage development was normal, but lysis did not occur unless a temperature downshift to 30 degrees C was imposed. Similarly, induction of the cloned phi X174 gene E with isopropyl-beta-D-thiogalactoside resulted in lysis at 30 degrees C but not at 42 degrees C. Temperature downshift of the induced culture to 30 degrees C resulted in lysis even in the presence of chloramphenicol. These results indicate that host cell lysis by phage phi X174 is dependent on a functional cellular autolytic enzyme system.  相似文献   

16.
Functions of gene C and gene D products of bacteriophage phi X 174.   总被引:8,自引:6,他引:8       下载免费PDF全文
Phage-related materials existing in cells infected with various mutants of bacteriophage phi chi 174 were investigated. A novel species of replicative-form (RF) DNA was found in cells infected with a phage mutant of gene B, C, D, F, or G. This species, called RFI, sedimented at a position between RFI and RFII in a neutral sucrose gradient. It was converted to RFI upon denaturation in alkali, denaturation in formamide and subsequent renaturation, or RNase treatment at low ionic strength. In cells infected with a phage mutant of gene C, RFI was derived from pulse-labeled RFII after a short chase. TLLS INFECTED WITH A MUTANT OF GENE B, D, or F. A possible function of the C gene product of phi chi 174 could be to prevent the conversion of RFII to RFI, thereby maintaining the availability of RFII to act as the template for single-stranded viral DNA synthesis. A protein complex containing no DNA, which sedimented with an S value of 108 in a sucrose gradient and contained virion proteins F, G, and H, and nonvirion protein D, was found in cells infected with the gene C mutant. A possible function of protein D was considered as a scaffolding protein for assembly of phage structural proteins.  相似文献   

17.
The nuclease specificity of the bacteriophage phi X174 A* protein.   总被引:3,自引:3,他引:3       下载免费PDF全文
The A* protein of bacteriophage phi X174 is a single-stranded DNA specific nuclease. It can cleave phi X viral ss DNA in many different places. The position of these sites have been determined within the known phi X174 nucleotide sequence (1). From the sequences at these sites it is clear that the A* protein recognizes and cleaves at sites that show only partial homology with the origin of RF DNA replication in the phi X DNA. Different parts of the origin sequence can be deduced that function as a signal for recognition and cleavage by the A* protein. We conclude that different parts within the DNA recognition domain of the A* protein are functional in the recognition of the origin sequence in single-stranded DNA. The existence of different DNA recognition domains in the A* protein, and therefore also in the A protein, leads to a model that can explain how the A protein performs its multiple function in the phi X174 DNA replication process (2).  相似文献   

18.
At 15 degrees C, phi X174-infected cells make single-stranded viral DNA fragments, varying in size from 0.2 to 0.9 times that of phi X DNA. In non-deproteinized lysates, this single-stranded DNA is found associated with proteins in particles sedimenting heterogeneously with an S20, w average of 80 to 90S. These particles do not differ appreciably from mature virus in polypeptide composition. Chase experiments, at 37 degrees C, of the label incorporated into this DNA at 15 degrees C suggest that both the single-stranded DNA fragments and the 80 to 90S particles are not precursors of virions but are defective end products.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号