首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium, an ubiquitous second messenger, plays an essential and versatile role in cellular signaling. The diverse function of calcium signals is achieved by an excess of calcium sensors. Plants possess large numbers of calcium sensors, most of which have not been functionally characterized. To identify physiologically relevant calcium sensors in a specific cell type, we conducted a genome-wide functional survey in pollen tubes, for which spatiotemporal calcium signals are well-characterized and required for polarized tip growth. Pollen-specific members of calmodulin (CaM), CaM-like (CML), calcium-dependent protein kinase (CDPK) and calcineurin B-like protein (CBL) families were tagged with green fluorescence protein (GFP) and their localization patterns and overexpression phenotypes were characterized in tobacco pollen tubes. We found that several fusion proteins showed distinct overexpression phenotypes and subcellular localization patterns. CDPK24-GFP was localized to the vegetative nucleus and the generative cell/sperms. CDPK32-GFP caused severe growth depolarization. CBL2-GFP and CBL3-GFP exhibited dynamic patterns of subcellular localization, including several endomembrane compartments, the apical plasma membrane (PM), and cytoskeleton-like structures in pollen tubes. Their overexpression also inhibited pollen tube elongation and induced growth depolarization. These putative calcium sensors are excellent candidates for the calcium sensors responsible for the regulation of calcium homeostasis and calcium-dependent tip growth and growth oscillation in pollen tubes.  相似文献   

2.
Activation of the membrane-bound NADPH oxidase in human polymorphonuclear leukocytes can be triggered by chemoattractants, the tumor promoter phorbol myristate acetate or the calcium ionophore A23187. We have shown previously that these stimuli have markedly different temporal patterns of oxidase activation (McPhail, L. C., and Snyderman, R. (1983) J. Clin. Invest. 72, 192-200), suggesting that each follows, at least in part, a unique transductional pathway. We now report that if leukocytes were sequentially exposed to any of several combinations of heterologous stimuli, the pattern of activation by the second stimulus was strikingly altered, resulting in a more rapid rate and enhanced level of oxidase activation by the second stimulus. This suggests that exposure of cells to the first stimulus (priming) had influenced an intermediate also used by the second stimulus. The signal for priming could be clearly distinguished from the signal causing oxidase activation by the dose-response curves for each, as well as by the use of several pharmacologic agents. In addition, if leukocytes were given sequential doses of homologous stimuli, either partial (phorbol myristate acetate) or full (N-formyl-methionyl-leucyl -phenylalanine and A23187) desensitization of oxidase activation was observed. These results demonstrate that these stimuli share a common intermediate in the pathway of oxidase activation. Moreover, the data indicate that NADPH oxidase activation is regulated by at least three distinct signals: signal 1 (priming), signal 2 (activation), and signal 3 (inactivation). It is likely that more than one intracellular messenger exerts a modulating influence on NADPH oxidase activity and that its regulation involves the interplay between several cellular control proteins.  相似文献   

3.
Recent evidence suggests that multiple calcium-releasing messengers might be activated simultaneously to regulate patterns of intracellular calcium signalling. In this way, agonists might use different messenger cocktails to encode specific signals and target selected processes.  相似文献   

4.
陈娇娆  续旭  胡章立  杨爽 《植物研究》2022,42(4):713-720
盐胁迫对植物的生长和发育造成严重影响,其危害包括渗透胁迫、离子毒害等,严重损害了农业生产和粮食安全。在盐胁迫下,植物相关感受器接受刺激,使得Ca2+通过细胞膜以及细胞内钙库膜上打开的Ca2+通道进入细胞质基质,导致细胞质内Ca2+浓度升高,产生钙信号。钙离子作为重要的第二信使,在植物细胞内和细胞间传递信号,信号往下游传递,在不同生长和发育阶段引起植物一系列的生理响应来应对盐胁迫影响。钙信号主要通过钙调蛋白(CaM)、钙调素样蛋白(CML)、钙依赖性蛋白激酶(CDPK)、钙调磷酸酶B样蛋白(CBL)和CBL互作蛋白激酶(CIPK)感知并将特异的钙信号信息传递到下游;从而激活植物盐胁迫生理响应。本文主要综述植物如何感知盐胁迫刺激,以及钙信号产生与传导机制,并对该研究领域需解决的问题进行了展望。  相似文献   

5.
6.
谢畅 《生物磁学》2009,(2):346-349,354
钙调素(Calmodulin,CaM)是一个特别的对钙敏感的蛋白,在钙信号传导通路中扮演重要角色钙/钙调素依赖性蛋白激酶(Calcium/calmodulin-dependent kinases(CaMKs))与荷尔蒙、神经迷质及其他信号引起的细胞反应相关、作为重要的第二信使,钙/钙调素依赖的蛋白激酶Ⅱ(CaM—KⅡ)是一类在细咆中无所不在的表达的蛋白激酶,能维持细胞内的钙浓度在很低的水平,再增加后续的特定的钙激动刺激。钙/钙调素依赖的簧白激酶Ⅱ独特的全酶结构和自我调节的性质使其对短暂的钙信号和胞内钙的变化能做出延长反应:本文从结构、合成、细胞分布、反应底物、生理功能等方面介绍了钙/钙调素依赖的蛋白激酶Ⅱ的激活对细胞信号传导的作用。  相似文献   

7.
Following its production by adenylyl cyclases, the second messenger cAMP is in involved in pleiotrophic signal transduction. The effectors of cAMP include the cAMP-dependent protein kinase (PKA), the guanine nucleotide exchange factor Epac (exchange protein activated by cAMP), and cAMP-dependent ion channels. In turn, cAMP signaling is attenuated by phosphodiesterase-catalyzed degradation. The association of cAMP effectors and the enzymes that regulate cAMP concentration into signaling complexes helps to explain the differential signaling initiated by members of the G(s)-protein coupled receptor family. The signal transduction complex formed by the scaffold protein mAKAP (muscle A kinase-anchoring protein) at the nuclear envelope of both striated myocytes and neurons contains three cAMP-binding proteins, PKA, Epac1, and the phosphodiesterase PDE4D3. In addition, the mAKAP complex also contains components of the ERK5 MAP kinase signaling pathway, the calcium release channel ryanodine receptor and the phosphatases PP2A as well as calcineurin. Analysis of the mAKAP complex illustrates how a macromolecular complex can serve as a node in the intracellular signaling network of cardiac myocytes to integrate multiple cAMP signals with those of calcium and MAP kinases to regulate the hypertrophic actions of several hormones.  相似文献   

8.
非生物逆境胁迫下植物钙信号转导的分子机制   总被引:1,自引:0,他引:1  
Ca2+作为植物细胞中最重要的第二信使, 参与植物对许多逆境信号的转导。在非生物逆境条件下, 植物细胞质内的钙离子在时间、空间及浓度上会出现特异性变化, 即诱发产生钙信号。钙信号再通过其下游的钙结合蛋白进行感受和转导, 进而在细胞内引起一系列的生物化学反应以适应或抵制各种逆境胁迫。目前在植物细胞中发现Ca2+/CDPK、Ca2+/CaM和Ca2+/CBL 3类钙信号系统, 研究表明它们与非生物逆境胁迫信号转导密切相关。本文通过从植物在非生物逆境条件下钙信号的感受、转导到产生适应性和抗性等方面, 介绍钙信号转导分子机制的一些研究进展。  相似文献   

9.
Many different agonists use calcium as a second messenger. Despite intensive research in intracellular calcium signalling it is an unsolved riddle how the different types of information represented by the different agonists, is encoded using the universal carrier calcium. It is also still not clear how the information encoded is decoded again into the intracellular specific information at the site of enzymes and genes. After the discovery of calcium oscillations, one likely mechanism is that information is encoded in the frequency, amplitude and waveform of the oscillations. This hypothesis has received some experimental support. However, the mechanism of decoding of oscillatory signals is still not known. Here, we study a mechanistic model of calcium oscillations, which is able to reproduce both spiking and bursting calcium oscillations. We use the model to study the decoding of calcium signals on the basis of co-operativity of calcium binding to various proteins. We show that this co-operativity offers a simple way to decode different calcium dynamics into different enzyme activities.  相似文献   

10.
钙离子作为植物细胞的第二信使,广泛参与植物应对不同逆境胁迫的信号调控过程。水稻G蛋白促进蛋白1(Oryza sativa GTPase activating protein 1, OsGAP1)包含1个C2结构域,而含C2结构域的蛋白质是一类钙离子结合蛋白质,受钙信号的调控。本研究鉴定了水稻OsGAP1的由5个保守性天冬氨酸残基组成的阳离子结合区域。该区域可结合2个钙离子或者钾离子,且其结合钙离子的强度高于其结合钾离子的强度,但是不能结合镁离子。当将其中2个保守的天冬氨酸残基(Asp-23和Asp-28)突变为丙氨酸后,其对钙离子的结合能力减弱。对OsGAP1 C2结构域阳离子结合区域结合金属离子能力的研究,有助于加深对钙信号调控蛋白质的认识,为其在农业生产中的应用提供理论依据。  相似文献   

11.
An important feature of cellular regulation is the precise control of intracellular calcium levels. This is accomplished both by dynamic organelle release and sequestration of calcium and by specific calcium active transport mechanisms located in the plasma membrane. The actual calcium signal for mediation of a cellular response is carried out by specific intracellular proteins, the most widely studied examples are calmodulin and troponin C. The recent discovery of phospholipid protein kinase and calcimedins suggests receptor mediation via several independent proteins. The physiological importance of a particular protein as a calcium messenger rests on several features: 1) calcium binding is of the order of 1–10 μm, 2) the protein is known to be localized at the site of proposed action, 3) if translocation occurs upon activation, the time required is consistent with the time course of the physiologic response and 4) substrates or effectors at the next level of action when isolated can be demonstrated to have similar activation kinetics as in situ.  相似文献   

12.
13.
Abstract

The role of calcium as a second messenger in plant cells has been recognized in a number of physiological processes. As described for animal systems, plant cells contain all the elements necessary for coupling the external signals to a specific response by regulation of calcium levels. However, the evidence that Ca2+ can be considered a second messenger for hormone response in plants is still circumstantial, besides several reports on the subject have been produced. All the hormone effects may in some tissues be regulated by calcium metabolism, but only for few of them a precise role of this cation has been established. The studies on the different hormones will be reviewed and discussed.  相似文献   

14.
15.
Regulation of alternative splicing by reversible protein phosphorylation   总被引:3,自引:0,他引:3  
The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological properties. The selection of alternative splice sites is governed by the dynamic formation of protein complexes on the processed pre-mRNA. A unique set of these splicing regulatory proteins assembles on different pre-mRNAs, generating a "splicing" or "messenger ribonucleoprotein code" that determines exon recognition. By influencing protein/protein and protein/RNA interactions, reversible protein phosphorylation modulates the assembly of regulatory proteins on pre-mRNA and therefore contributes to the splicing code. Studies of the serine/arginine-rich protein class of regulators identified different kinases and protein phosphatase 1 as the molecules that control reversible phosphorylation, which controls not only splice site selection, but also the localization of serine/arginine-rich proteins and mRNA export. The involvement of protein phosphatase 1 explains why second messengers like cAMP and ceramide that control the activity of this phosphatase influence alternative splicing. The emerging mechanistic links between splicing regulatory proteins and known signal transduction pathways now allow in detail the understanding how cellular signals modulate gene expression by influencing alternative splicing. This knowledge can be applied to human diseases that are caused by the selection of wrong splice sites.  相似文献   

16.
Calcium in plant defence-signalling pathways   总被引:18,自引:0,他引:18  
In plant cells, the calcium ion is a ubiquitous intracellular second messenger involved in numerous signalling pathways. Variations in the cytosolic concentration of Ca2+ ([Ca2+]cyt) couple a large array of signals and responses. Here we concentrate on calcium signalling in plant defence responses, particularly on the generation of the calcium signal and downstream calcium-dependent events participating in the establishment of defence responses with special reference to calcium-binding proteins.  相似文献   

17.
The NF-kappaB signal transduction pathway involves the interaction of several NF-kappaB and IkappaB family members that are activated by a diverse range of extracellular signals and that stimulate many different cellular responses. The biochemical regulation of this cascade can be studied by establishing a cell-free system using purified proteins. As a first step toward establishing an in vitro model incorporating multiple combinations of NF-kappaB and IkappaB proteins, we produced purified human p65 (RelA) and human IkappaBalpha proteins and tested their functionality. Full-length RelA and IkappaBalpha proteins were overproduced by coinfection of TN5-JE cells with two recombinant baculoviruses. RelA and IkappaBalpha formed a stable complex that could be purified to >95% homogeneity. Protein-protein interactions, protein-DNA binding, and protein phosphorylation were similar to the native proteins.  相似文献   

18.
The G protein-coupled inwardly rectifying K+ channel, GIRK1/GIRK4, can be activated by receptors coupled to the Galpha(i) subunit. An opposing role for Galpha(q) receptor signaling in GIRK regulation has only recently begun to be established. We have studied the effects of m1 muscarinic acetylcholine receptor (mAChR) stimulation, which is known to mobilize calcium and activate protein kinase C (PKC) by a Galpha(q)-dependent mechanism, on whole cell GIRK1/4 currents in Xenopus oocytes. We found that stimulation of the m1 mAChR suppresses both basal and dopamine 2 receptor-activated GIRK 1/4 currents. Overexpression of Gbetagamma subunits attenuates this effect, suggesting that increased binding of Gbetagamma to the GIRK channel can effectively compete with the G(q)-mediated inhibitory signal. This G(q) signal requires the use of second messenger molecules; pharmacology implicates a role for PKC and Ca2+ responses as m1 mAChR-mediated inhibition of GIRK channels is mimicked by PMA and Ca2+ ionophore. We have analyzed a series of mutant and chimeric channels suggesting that the GIRK4 subunit is capable of responding to G(q) signals and that the resulting current inhibition does not occur via phosphorylation of a canonical PKC site on the channel itself.  相似文献   

19.
We have investigated the detailed regulation of neuronal firing pattern by the cytosolic calcium buffering capacity using a combination of mathematical modeling and patch-clamp recording in acute slice. Theoretical results show that a high calcium buffer concentration alters the characteristic regular firing of cerebellar granule cells and that a transition to various modes of oscillations occurs, including bursting. Using bifurcation analysis, we show that this transition from spiking to bursting is a consequence of the major slowdown of calcium dynamics. Patch-clamp recordings on cerebellar granule cells loaded with a high concentration of the fast calcium buffer BAPTA (15 mM) reveal dramatic alterations in their excitability as compared to cells loaded with 0.15 mM BAPTA. In high calcium buffering conditions, granule cells exhibit all bursting behaviors predicted by the model whereas bursting is never observed in low buffering. These results suggest that cytosolic calcium buffering capacity can tightly modulate neuronal firing patterns leading to generation of complex patterns and therefore that calcium-binding proteins may play a critical role in the non-synaptic plasticity and information processing in the central nervous system.  相似文献   

20.
C-RAF kinase is a central component of the Ras-RAF-MEK (mitogen‐activated protein kinase/extracellular signal‐regulated kinase)-ERK (extracellular signal‐regulated kinase) pathway, which has been shown to be activated in 30% of human tumors. 14-3-3 proteins inactivate C-RAF by binding to the two N-terminal phosphorylation-dependent binding sites surrounding S233 and S259. 14-3-3 proteins can bind two target sequences located on one polypeptide chain simultaneously, thereby increasing binding affinity compared to single‐site binding and possibly allowing regulated 14-3-3 binding through gatekeeper phosphorylation. To date, it was unclear whether 14-3-3 proteins can bind the two N-terminal phosphorylation-dependent binding sites of C-RAF simultaneously. Fluorescence polarization using phosphorylated peptides demonstrated that S233 is the low-affinity and S259 is the high-affinity binding site, while simultaneous engagement of both sites by 14-3-3ζ enhances affinity compared to single‐site binding. Determination of a 1:1 stoichiometry for the di-phosphorylated peptide binding to one 14-3-3ζ dimer with isothermal titration calorimetry was supported by the crystal structure of the 14-3-3ζ/C-RAFpS233,pS259 complex. Cellular localization studies validate the significance of these sites for cytoplasmic retention of C-RAF, suggesting an extended mechanism of RAF regulation by 14-3-3 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号