首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics and mechanism of transfer of 14C-labeled human apolipoproteins A-I, A-II and C-III1 between small unilamellar vesicles (SUV) have been investigated. Ion exchange chromatography was used for rapid separation of negatively charged egg phosphatidylcholine (PC)/dicetyl phosphate donor SUV containing bound 14C-labeled apoprotein from neutral egg PC acceptor SUV present in 10-fold molar excess. The transfer kinetics of these apolipoproteins at 37 degrees C are consistent with the existence of fast, slow and apparently 'nontransferrable' pools of SUV-associated lipoprotein: the transfers from these pools occur on timescales of seconds (or less), minutes/hours and days/weeks, respectively. For donor SUV containing about 15 apoprotein molecules per vesicle and at a donor SUV concentration of 0.15 mg phospholipid/ml incubation mixture, the sizes of the fast kinetic pools for apolipoproteins A-I, A-II and C-III1 associated with donor SUV are 2, 10 and 11%, respectively. The sizes of the slow kinetic pools for these apolipoproteins are 16, 71 and 50%, respectively. The transfer of the various apolipoproteins from the slow kinetic pool follows first order kinetics and the half-time (t1/2) values are in the order: apo C-III1 less than apo A-I. Increasing the number of apoprotein molecules per donor SUV enlarges the size of the fast pool and increases the t1/2 of slow transfer. The differences in the kinetics of apolipoprotein transfer between SUV are consequences of the variations in the primary and secondary structures of the apolipoprotein molecules. The slow transfer of apoprotein molecules is mediated by collisions between donor and acceptor SUV; the rate is dependent on the apoprotein molecular weight with larger molecules transferring more slowly from donor SUV containing the same lipid/protein molar ratio. The hydrophobicity of the apoprotein molecule is also significant with less hydrophobic molecules transferring more rapidly. Further understanding of the differences in the kinetics of transfer of these apolipoproteins will require more knowledge of their secondary and tertiary structures.  相似文献   

2.
Efflux of [14C]cholesterol from various cells was monitored in the presence of discoidal complexes of egg phosphatidylcholine and purified apolipoproteins, containing either apoAI, AII, or Cs. Particles containing apoAI were more efficient acceptors than those containing apoAII or Cs when the donor cells were J774 macrophages. No differences were observed when the same acceptor preparations were exposed to Fu5AH rat hepatoma or rabbit aortic smooth muscle cells. The differential efficiency of apolipoproteins in stimulating cholesterol removal from J774 cells was maintained in a plasma membrane-enriched fraction isolated from the same cells. Nonlinear regression analysis of kinetic data obtained from J774 cells exposed to apoAI complexes indicated that cholesterol efflux was best fitted to a curve describing the release from two kinetic compartments. Approximately 10% of cholesterol was transferred from a rapidly exchangeable pool with a t1/2 ranging between 1.5 and 3 h, and the remaining fraction was released from a slower pool with a t1/2 of about 20 h. Modulation of cholesterol efflux from J774 cells by either varying the concentration or the apolipoprotein composition of the acceptors influenced the size of the pools and the t1/2 of the slow pool. Kinetics of cholesterol efflux from membranes isolated from J774 cells also best fit a two-compartment model and modification of the apolipoprotein composition of the acceptor induced a pattern of changes in pool size and half-time similar to that described for whole cells. In the three cell lines studied, we consistently resolved a slow pool with a half-time ranging between 15 and 20 h. In smooth muscle cells only the slow pool was evident, whereas in Fu5AH a very large fast pool was also resolved. In contrast to J774 cells, apolipoprotein composition of the acceptor did not influence the pools in these two cell lines. These results led us to propose a new model regarding the influence of multiple kinetic pools of cholesterol on the regulation of cholesterol desorption from the cell membrane.  相似文献   

3.
Transfer of apolipoprotein (apo) molecules between lipoprotein particles is an important factor in modulating the metabolism of the particles. Although the phenomenon is well established, the kinetics and molecular mechanism of passive apo exchange/transfer have not been defined in detail. In this study, the kinetic parameters governing the movement of radiolabeled apoC molecules from human very low density lipoprotein (VLDL) to high density lipoprotein (HDL3) particles were measured using a manganese phosphate precipitation assay to rapidly separate the two types of lipoprotein particles. In the case of VLDL labeled with human [14C]apoCIII1, a large fraction of the apoCIII1 transfers to HDL3 within 1 minute of mixing the two lipoproteins at either 4 degrees or 37 degrees C. As the diameter of the VLDL donor particles is decreased from 42-59 to 23-25 nm, the size of this rapidly transferring apoCIII1 pool increases from about 50% to 85%. There is also a pool of apoCIII1 existing on the donor VLDL particles that transfers more slowly. This slow transfer follows a monoexponential rate equation; for 35-40 nm donor VLDL particles the pool size is approximately 20% and the t1/2 is approximately 3 h. The flux of apoCIII molecules between VLDL and HDL3 is bidirectional and all of the apoCIII seems to be available for exchange so that equilibrium is attained. It is likely that the two kinetic pools of apoCIII are related to conformational variations of individual apo molecules on the surface of VLDL particles. The rate of slow transfer of apoCIII1 from donor VLDL (35-40 nm) to acceptor HDL3 is unaffected by an increase in the acceptor to donor ratio, indicating that the transfer is not dependent on collisions between donor and acceptor particles. Consistent with this, apoCIII1 molecules can transfer from donor VLDL to acceptor HDL3 particles across a 50 kDa molecular mass cutoff semipermeable membrane separating the lipoprotein particles. These results indicate that apoC molecules transfer between VLDL and HDL3 particles by an aqueous diffusion mechanism.  相似文献   

4.
Effects of apolipoproteins on the kinetics of cholesterol exchange   总被引:1,自引:0,他引:1  
The effects of apolipoproteins on the kinetics of cholesterol exchange have been investigated by monitoring the transfer of [14C]cholesterol from donor phospholipid/cholesterol complexes containing human apolipoproteins A, B, or C. Negatively charged discoidal and vesicular particles containing purified apolipoproteins complexed with lipid (75 mol % egg PC, 15 mol % dicetyl phosphate, and 10 mol % cholesterol) and a trace of [14C]cholesterol were incubated with a 10-fold excess of neural, acceptor, small unilamellar vesicles (SUV; 90 mol % egg PC and 10 mol % cholesterol). The donor and acceptor particles were separated by chromatography on DEAE-Sepharose, and the rate of movement of labeled cholesterol was analyzed as a first-order exchange process. The kinetics of exchange of cholesterol from both vesicular and discoidal complexes that contain apoproteins are consistent with an aqueous diffusion mechanism, as has been established previously for PC/cholesterol SUV. The addition of 2-3 molecules of apo A-I to a donor SUV does not significantly alter the half-time (t1/2), which is 80 +/- 9 min at 37 degrees C. However, addition of 5-12 apo A-I molecules progressively decreases t1/2 from 65 +/- 2 to 45 +/- 4 min. This enhancement in the rate of desorption of cholesterol molecules is presumed to arise from the creation of packing defects at boundaries around the apoprotein molecules, which are intercalated among the phospholipid and cholesterol molecules in the surface of the donor SUV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The domain structure of cholesterol in membranes and factors affecting it are not well understood. A method, based on kinetics of delta 5,7,9,(11),22-erogostatetraen-3 beta-ol (dehydroergosterol) fluorescence polarization change and not requiring separation of donor and acceptor membranes, was used to examine sterol domains in three-component cholesterol:dehydroergosterol:phospholipid small unilamellar vesicles (SUV). A new mathematical data treatment was developed to provide a direct correlation between molecular sterol exchange and steady-state dehydroergosterol fluorescence polarization measurements. The method identified multiple kinetic pools of sterol in SUV: a small but rapidly exchanging pool, a predominant slowly exchanging pool, and a very slowly exchangeable (nonexchangeable) pool. The relative sizes of the pools and half-times of exchange were highly dependent on the presence of acidic phospholipids and on cytosolic proteins involved in sterol transfer. Thus, the method provides a direct measure of molecular sterol transfer between membranes without separating donor and acceptor membranes.  相似文献   

6.
Role of apolipoproteins in cellular cholesterol efflux   总被引:1,自引:0,他引:1  
The effects of serum apolipoproteins, particle size and concentration on the effectiveness of phosphatidylcholine (PC)-containing acceptor particles in causing release of cholesterol from cells growing in culture have been investigated. The acceptor particles were prepared by detergent-dialysis procedures and were either egg PC small unilamellar vesicles (SUV) or discoidal complexes of egg PC with apoproteins from human high-density lipoprotein (HDL). Gel filtration chromatography was employed to isolate particles of defined composition and size. The half-times (t 1/2) for the unidirectional efflux of cholesterol from cells prelabeled with [3H]cholesterol were measured as a function of acceptor PC concentration in the extracellular medium. HDL apolipoprotein-egg PC discoidal complexes at 100 micrograms PC/ml gave the following t 1/2 values when incubated with rat Fu5AH hepatoma, human HepG2 hepatoma, human GM3468 skin fibroblast, L-cell and mouse J774 macrophage-tumor cells: 11 +/- 2, 22 +/- 5, 84 +/- 18, 17 +/- 2 and 32 +/- 6 h, respectively. Equivalent experiments using purified apolipoprotein A-I or the total apolipoprotein C fraction to form the egg PC complexes showed that the t 1/2 values for the hepatoma cells were unaltered. However, with the fibroblasts, L-cells and J774 macrophages, the apolipoprotein C complexes gave significantly longer t 1/2 than complexes of egg PC with either apolipoprotein A-I or HDL apolipoprotein which gave the same t 1/2. An analysis based on the theory of fast coagulation of colloid particles to describe collisions between desorbed cholesterol molecules and acceptor particles predicts that the dependence of t 1/2 for cholesterol efflux from a given cell to different acceptors should be normalized when the extracellular level of acceptors is expressed in terms of the product of the radius of the particle times the number concentration of acceptor particles. The decrease in t 1/2 for cholesterol efflux from fibroblasts when the egg PC acceptor was changed from an SUV to an apolipoprotein HDL discoidal complex is consistent with the above concepts. The primary effect of the apolipoproteins in promoting cellular cholesterol efflux seems to be the solubilization of PC so that the PC is present in the extracellular medium as many small particles.  相似文献   

7.
Free cholesterol is very efficiently removed from cells by 2-hydroxypropyl-beta-cyclodextrins. The efflux of cholesterol occurs from two distinct kinetic pools: the half-times (t(1/2)) for the two pools in CHO-K1 cells are 15 +/- 5 s and 21 +/- 6 min and they represent 25% +/- 5% and 75% +/- 5% of the readily exchangeable cell cholesterol, respectively. In this study we have determined that the fast pool and the majority of the slow kinetic pool for cholesterol efflux are apparently present in the plasma membrane. Numerous agents that inhibit intracellular cholesterol trafficking are unable to affect either the size or the t(1/2) for efflux of either kinetic pool. In contrast, treatment of the cells with N-ethylmaleimide (NEM), exogenous lipases such as sphingomyelinase and phospholipase C, calcium ionophore A23187, or heat resulted in the dramatic increase in the size of the fast kinetic pool of cholesterol. These changes in the kinetics of cholesterol efflux are not specific to the nature of the extracellular acceptor indicating that they are a consequence of changes in the cell plasma membrane. The above treatments disrupt the normal organization of the lipids in the plasma membrane via either hydrolysis or randomization. The phosphatidylcholine and sphingomyelin present in the plasma membrane are critical for maintaining the two kinetic pools of cholesterol; any alteration in the amount or the location of these phospholipids results in an enhancement of efflux by redistributing cholesterol into the fast kinetic pool.  相似文献   

8.
G Nemecz  F Schroeder 《Biochemistry》1988,27(20):7740-7749
The fluorescent sterol delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was investigated as a cholesterol analogue to examine sterol domains in and spontaneous exchange of sterol between 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV). Fluorescence lifetime, acrylamide quenching analyses, and intermembrane exchange kinetics were consistent with the presence of at least two sterol domains in POPC. Fluorescence lifetime was determined by phase and modulation fluorescence spectroscopy and analyzed by nonlinear least-squares as well as continuous distributional analyses. Both methods demonstrated that pure dehydroergosterol in POPC SUV had two lifetime components (C) and fractional intensities (F) near C1 = 0.851 ns (F1 0.96) and C2 = 2.668 ns (F2 0.004). In contrast to component C1, the center of lifetime distribution, fractional intensity, and peak width of dehydroergosterol lifetime component C2 was dependent on the polarity of the medium and vesicle curvature. The sterol domain corresponding to dehydroergosterol component C2 was preferentially quenched by acrylamide. Acrylamide quenching of dehydroergosterol fluorescence demonstrated that the two lifetime components of dehydroergosterol were not due to transbilayer sterol domains with different lifetimes. In a spontaneous exchange assay not requiring separation of donor and acceptor SUV, the lifetime component C2, but not C1, shifted to a shorter lifetime with altered distributional width. The kinetics of these lifetime and distributional width changes best fitted a two-exponential function, with a fast exchange rate constant K1 = 0.0325 min-1, t1/2 = 21.3 min, and a slow rate constant k2 = 0.00275 min-1, t1/2 = 261 min. The fast exchanging pool correlates with the longer lifetime component C2. These kinetics were confirmed both by dehydroergosterol exchange measured with fluorescence intensity and by [3H]cholesterol exchange. In summary, lifetime, distributional width, acrylamide quenching, and classical exchange assay data are consistent with the presence of at least two pools of sterol in POPC SUV.  相似文献   

9.
J Storch  A M Kleinfeld 《Biochemistry》1986,25(7):1717-1726
Movement of free fatty acids (ffa) between small unilamellar vesicles (SUV) was studied by measuring the transfer of fluorescent n-(9-anthroyloxy)-labeled analogues (AOffa) between donor and acceptor vesicles. Donors were composed of egg phosphatidylcholine (PC) loaded with 1-2 mol % AOffa, and acceptors were egg PC containing 10-12 mol % N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (NBD-PE). The fluorescence of AO added directly to acceptor SUV was greater than 98% quenched by energy transfer to NBD. Thus, AOffa movement from donor to acceptor was monitored by the time-dependent decrease in AO fluorescence. The transfer of the short-chain AOffa, although too fast to be resolved by the methods used here, is consistent with studies that find transfer rates on the order of milliseconds and kinetics which are first order. In contrast, transfer rates for the long-chain AOffa are more than 2 orders of magnitude slower, and the kinetics of the transfer process are best described by the sum of two exponentials plus a constant. The ffa ionization state was also found to be an important determinant of transfer rate. The charged species transferred an average of 10-fold faster than the protonated ffa. The ffa pKa in the membrane is 9, as calculated from the pH dependence of transfer. Similar to results found for other lipids, long-chain AOffa are transferred via water rather than a collision-mediated process. The aqueous phase route of AOffa intermembrane transfer is indicated by the lack of effect on transfer of large alterations in the product of donor and acceptor phospholipid concentrations. Moreover, the transfer rate is decreased as [NaCl] is increased from 0.1 to 4 M. This effect of ionic strength is probably due not only to a decrease in the aqueous phase partition of the AOffa but also to an alteration in bilayer structure, as measured by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. The observed kinetics are consistent with a model in which the transfer involves two steps: transbilayer movement between the inner and outer bilayer leaflets, followed by transfer from the outer leaflet to the aqueous phase (off rate). Within the framework of this model, the observed slow rate is primarily determined by the rate of transbilayer movement, and the observed fast rate is approximately equal to the off rate. The off rate is about 10-fold faster than the rate of transbilayer movement.  相似文献   

10.
A fluorescence and radiolabel study of sterol exchange between membranes   总被引:2,自引:0,他引:2  
The fluorescent sterols delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) and delta 5,7,9,(11)-cholestatrien-3 beta-ol (cholestatrienol) as well as [1,2-3H]cholesterol were utilized as cholesterol analogues to examine spontaneous exchange of sterol between 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV). Exchange of fluorescent sterols was monitored at 24 degrees C by release from self-quenching of polarization from the time of mixing without separation of donor and acceptor vesicles. The polarization curve for 35 mol% sterol in POPC best fitted a two-exponential function, with a fast-exchange rate constant k1 = 0.0217 min-1, 1t1/2 = 32 min, size pool 1 = 12%, and a slow rate constant k2 = 2.91.10(-3) min-1, 2t1/2 = 238 min, size pool 2 = 88%. In addition to the above two exchangeable pools of sterol, the data were consistent with the presence of a slowly or nonexchangeable pool, 42% of total sterol, that was highly dependent on sterol content. These results were confirmed by simultaneous monitoring of [1,2-3H]cholesterol radioactivity and dehydroergosterol fluorescence intensity after separation of donor and acceptor vesicles by ion-exchange column chromatography. Thus, dehydroergosterol or cholestatrienol exchange as measured by fluorescence parameters (polarization and/or intensity) provides two new methods to follow cholesterol spontaneous exchange. These methods allow resolution and quantitation of a shorter exchange t1/2 near 30 min previously not reported. Thus, the cholesterol desorption rate from membranes may be faster than previously believed. In addition, the presence of a slowly non-exchangeable pool was confirmed.  相似文献   

11.
The kinetics of long-chain fatty acid (FA) transfer from three different donor systems to unilamellar egg phosphatidylcholine (EPC) vesicles containing the pH-sensitive fluorophore pyranine in the vesicle cavity were determined. The transfer of long-chain FA from three FA donors, FA vesicles, unilamellar EPC vesicles containing FA, and bovine serum albumin-FA complexes to pyranine-containing EPC vesicles is a true first-order process, indicating that the FA transfer proceeds through the aqueous phase and not through collisional contacts between the donor and acceptor. A collisional mechanism would be at least bimolecular, giving rise to second-order kinetics. Evidence from stopped-flow fluorescence spectroscopy using the pyranine assay (as developed by Kamp, F., and Hamilton, J. A. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11367-11370) shows that the transverse or flip-flop motion of long-chain FA (from 14 to 22 C atoms) is immeasurably fast in both small and large unilamellar EPC vesicles and characterized by half-times t(1/2) < 5 ms. The rate-limiting step of FA transfer from these different donor systems to pyranine-containing EPC vesicles is the dissociation or desorption of the FA molecule from the donor. The desorption of the FA molecule is chain-length-dependent, confirming published data (Zhang et al. (1996) Biochemistry 35, 16055-16060): the first-order rate constant k(1) decreases by a factor of about 10 with elongation of the FA chain by two CH(2) groups. Similar rates of desorption are observed for the transfer of oleic acid from the three donors to pyranine-containing EPC vesicles with rate constants k(1) ranging from 0.4 to 1.3 s(-1). We also show that osmotically stressed, pyranine-containing EPC vesicles can give rise to artifacts. In the presence of a chemical potential gradient across the lipid bilayer of these vesicles, fast kinetic processes are observed with stopped-flow fluorescence spectroscopy which are probably due to electrostatic and/or osmotic effects.ne  相似文献   

12.
31P and 13C-NMR were used to determine the kinetics of choline and ethanolamine incorporation in T47D clone 11 human breast cancer cells grown as small (150 microns) spheroids. Spheroids were perfused inside the spectrometer with 1,2-13C-labeled choline or 1,2-13C-labeled ethanolamine (0.028 mM) and the buildup of labeled phosphoryl-choline (PC) or phosphorylethanolamine (PE) was monitored. Alternatively the PC and GPC pools were prelabeled with 13C and the reduction of label was monitored. 31P spectra were recorded from which the overall energetic status as well as total pool sizes could be determined. The ATP content was 8 +/- 1 fmol/cell, and the total PC and PE pool sizes were 16 and 14 fmol/cell, respectively. PC either increased by 50% over 24 h or remained constant, while PE remained constant in medium without added ethanolamine but increased 2-fold within 30 h in medium containing ethanolamine, indicating a dependence on precursor concentration in the medium. The 31P and 13C data yielded similar kinetic results: the rate of the enzymes phosphocholine kinase and phosphoethanolamine kinase were both on the order of 1.0 fmol/cell per h, and the rate constants for CTP:phosphocholine cytidyltransferase and CTP:phosphoethanolamine kinase were 0.06 h-1 for both enzymes. The kinetics of choline incorporation did not alter in the presence of 0.028 mM ethanolamine indicating that they have non-competing pathways.  相似文献   

13.
We have studied the effects of modification of the endogenous phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG) content of the plasma membrane of Mycoplasma capricolum on the kinetics of spontaneous [14C]cholesterol and 14C-labeled phospholipid exchange between M. capricolum membranes and lipid vesicles. The PG/DPG molar ratio of M. capricolum membranes changed when cells were grown in media supplemented with 0.5 mM CaCl2 and/or egg phosphatidylcholine (PC) (10-20 micrograms/ml), increasing from 3.9 to 6.3 on supplementation with Ca2+; this ratio decreased to 1.1 in media supplemented with PC and to 1.8 in media containing both PC and Ca2+. The ratio of palmitate to oleate in both PG and DPG decreased when cells were grown with PC or with PC and Ca2+. Bilayer disruptions were seen in freeze-fracture electron micrographs of trypsin-treated M. capricolum membranes from cells grown with both Ca2+ and PC, and numerous lipidic particles and other bilayer disruptions were observed in trypsin-treated M. capricolum membranes and their lipid extracts. The rates of spontaneous exchange of 14C-labeled cholesterol and PC from membranes isolated from cells grown with PC and Ca2+ to acceptor lipid vesicles were exchanged by approximately 30%, and the rate of the rapidly exchangeable cholesterol pool in intact cells was enhanced by 64%. The enhancements in cholesterol and PC exchange rates are considered to result from structural defects expected in the M. capricolum membranes obtained from cells grown with Ca2+ supplementation. Our findings parallel previous examples of functional modifications of membranes induced by bilayer instability arising from a pretransitional state leading to the onset of a nonlamellar phase.  相似文献   

14.
Cholesterol transfer from small and large unilamellar vesicles   总被引:3,自引:0,他引:3  
The rates of transfer of [14C]cholesterol from small and large unilamellar cholesterol/egg yolk phosphatidylcholine vesicles to a common vesicle acceptor were compared at 37 degrees C. The rate of exchange of cholesterol between vesicles of identical cholesterol concentrations (20 mol%) did not differ from the rate of transfer from donor vesicles containing 20 mol% cholesterol to egg yolk PC vesicles. Further, the rate of transfer of [14C]cholesterol from vesicles containing 15 mol% dicetyl phosphate (to confer a negative charge) was not different from the rate of transfer from neutral vesicles. However, the half-time for transfer of [14C]cholesterol from large unilamellar donor vesicles was about 5-times greater (10.2 h, 80 nm diameter) than from small unilamellar vesicles (2.3 h, 23 nm diameter). These data suggest that increased curvature in small unilamellar vesicles reduces cholesterol-nearest neighbor interactions to allow a more rapid transfer of cholesterol into the aqueous phase.  相似文献   

15.
This report describes the molecular species composition of phosphatidylcholines (PC) transferred from human erythrocytes to acceptor vesicles composed of cholesterol and single PC species in the presence of PC-specific transfer protein from bovine liver. The compositions of the PC isolated from the vesicles were determined by capillary GLC as the diacylglycerol trimethylsilyl ethers. The cellular PC species appearing in the acceptor vesicles were enriched in unsaturated species and showed a low content of dipalmitoyl PC compared to untreated erythrocytes. This trend was independent of the composition of the PC used to construct the acceptor vesicles and it was possible to determine that the relative rates of efflux of the palmitoyl-containing phosphatidylcholines decreased in the order: palmitoyl-linoleoyl greater than palmitoyl-oleoyl greater than dipalmitoyl and in the stearoyl series, stearoyl-linoleoyl greater than stearoyl-oleoyl. No clear trend was distinguished for the influence of chain-length on the efflux, thus preventing an unambiguous assignment of the order of removal of all species from the cell membrane. Results derived for arachidonoyl-containing species were compromised by evidence for oxidation occurring during incubations at 37 degrees C. To confirm that acyl selectivity was also possible during transfer in the absence of the transfer protein, the efflux of 14C-labeled soya PC and [14C]dipalmitoyl PC from prelabeled erythrocytes was measured using plasma as the acceptor. As predicted by the chromatographic analyses, 14C-labeled soya PC effused up to 10-times faster than [14C]dipalmitoyl PC from the red cell membrane. Thus, the more rapid transfer of unsaturated PC cannot be explained entirely as a specificity of the transfer protein and is consistent with the hypothesis that intermolecular interactions involving PC molecules within the erythrocyte membrane, become weaker with increasing unsaturation. The results suggest a potential role of PC-specific transfer protein as a probe of the nature of PC interactions within biological membranes.  相似文献   

16.
T lymphocytes contain two kinetic pools of cholesterol extractable with methyl-beta-cyclodextrin (m-beta-CD): a fast pool (31.5%, t1/2=17 s) and a slow pool (68.5%, t1/2=15 min). Purification of detergent-resistant membranes (DRMs) shows that the fast pool corresponds to buoyant cholesterol. Cholesterol extraction of the fast pool (i.e. cholesterol from rafts) still allows the buoyancy of signaling proteins and their phosphorylation under CD3 stimulation. Cholesterol depletion of the slow pool (i.e. cholesterol from membranes other than rafts) is accompanied by the extraction of the whole raft followed by the inhibition of CD3-induced tyrosine-phosphorylations. Cholesterol oxidase (COase) allows a specific oxidation of raft cholesterol into cholestenone. Cholestenone leaves the DRMs and accumulates as Triton X-100-soluble material. Specific cholesterol-rich raft disruption by COase does not inhibit the activation of either Jurkat cells or T CD4+ lymphocytes. Our study challenges the real role of cholesterol-rich rafts in CD3/TCR signaling and suggests that a cholesterol-poor subtype of rafts is involved in signal transmission via the TCR.  相似文献   

17.
A method is proposed for spectroscopic probing photo-induced reversible oxidation-reduction changes of high-potential cytochrome in chromatophore films of various humidity. On these preparations of Ect. shaposhnikovii and Chr. minutissium it was found that the characteristic time of cytochrome oxidation, tau, in samples with a high degree of humidity (P/Ps = 0.75) is 2-3 mus, which is close to that seen under physiological conditions (a suspension of intact cells or chromatophores). It was found that under continuous or pulsed illumination the lowering of the relative humidity from 0.75 to 0.15 P/Ps results in a reversible decrease in the amount of cytochrome molecules that can undergo photooxidation. The fraction of cytochrome pool that retains its activity shows a rate of oxidation which remains almost without change. The observed hydration effect and its involvement in the control of the photo-induced oxidation of cytochromes must be taken into account when a model of the molecular mechanism of this process is constructed on the basis of the electron tunneling theory. It is also shown that the dark-reduction kinetics of high-potential cytochrome consist of two components: a fast component with t1/2 = 1-3s which is independent of the sample humidity and a slow component with t1/2 = 5-20 s whose lifetime increases by a factor of 3-5 on reducing the humidity. At a high degree of humidity (P/Ps = 0.75-0.5), the kinetics of cytochrome dark-reduction exhibits only the slow component. The fast component is probably associated with the return of an electron from the primary ferroquinone acceptor and the slow component seems likely to be due to the direct transfer of an electron from exogenous electron donor to the cytochrome.  相似文献   

18.
Protein-mediated transfer of phosphatidylcholine (PC) by bovine liver phosphatidylcholine transfer protein (PC-TP) was examined using a vesicle-vesicle assay system. Donor and acceptor membranes were prepared from Escherichia coli phospholipids and limiting amounts of egg yolk PC. PC transfer between vesicles of E. coli lipid/egg PC was markedly higher than transfer of PC from vesicles of E. coli lipid/egg PC to vesicles of E. coli lipid. Kinetic parameters of the interaction between PC-TP and E. coli lipid vesicles with or without PC was investigated. The apparent dissociation constants of the complex formed between PC-TP and these vesicles were determined kinetically and from double-reciprocal plots of intrinsic PC-TP fluorescence intensity increase versus vesicle concentration. The magnitude of the dissociation constant decreased as the PC content of the vesicles increased from 0 to 5 mol%. In addition, kinetic analysis revealed that the presence of PC in acceptor vesicles increased both the association and dissociation of PC-TP from vesicles. The effect of membrane PC molecules on transfer rates was examined using bis-phosphatidylcholine, a dimeric PC molecule which is not transferred by PC-TP. Rates of PC transfer to acceptor vesicles comprised of E. coli lipid/bis-PC were virtually identical to rates observed with acceptors vesicles prepared from E. coli lipid. The results suggest that transfer of PC by PC-TP is enhanced only when insertion of protein-bound PC occurs concurrently with the extraction of a molecule of membrane PC, i.e., a concerted, one-step catalytic mechanism for phospholipid exchange.  相似文献   

19.
In circulation the phospholipid transfer protein (PLTP) facilitates the transfer of phospholipid-rich surface components from postlipolytic chylomicrons and very low density lipoproteins (VLDL) to HDL and thereby regulates plasma HDL levels. To study the molecular mechanisms involved in PLTP-mediated lipid transfer, we studied the interfacial properties of PLTP using Langmuir phospholipid monolayers and asymmetrical flow field-flow fractionation (AsFlFFF) to follow the transfer of 14C-labeled phospholipids and [35S]PLTP between lipid vesicles and HDL particles. The AsFlFFF method was also used to determine the sizes of spherical and discoidal HDL particles and small unilamellar lipid vesicles. In Langmuir monolayer studies high-activity (HA) and low-activity (LA) forms of PLTP associated with fluid phosphatidylcholine monolayers spread at the air/buffer interphase. Both forms also mediated desorption of [14C]dipalmitoylphosphatidylcholine (DPPC) from the phospholipid monolayer into the buffer phase, even when it contained no physiological acceptor such as HDL. After the addition of HDL3 to the buffer, HA-PLTP caused enhanced lipid transfer to them. The particle diameter of HA-PLTP was approximately 6 nm and that of HDL3 approximately 8 nm as determined by AsFlFFF analysis. Using this method, it could be demonstrated that in the presence of HA-PLTP, but not LA-PLTP, [14C]DPPC was transferred from small unilamellar vesicles (SUV) to acceptor HDL3 molecules. Concomitantly, [35S]-HA-PLTP was transferred from the donor to acceptor, and this transfer was not observed for its low-activity counterpart. These observations suggest that HA-PLTP is capable of transferring lipids by a shuttle mechanism and that formation of a ternary complex between PLTP, acceptor, and donor particles is not necessary for phospholipid transfer.  相似文献   

20.
The ability of human plasma phospholipid transfer protein to transfer L-alpha-[14C]dipalmitoylphosphatidylcholine (DPPC) from donor vesicles to acceptor high-density lipoproteins (HDL) was examined, using vesicles of different compositions and sizes, and native or chemically modified HDL. Phosphatidylcholine (PC) transfer was inhibited by both cholesterol and sphingomyelin incorporation into egg-PC vesicles. On a molar basis, cholesterol inhibited transfer about 5-fold more than sphingomyelin; however, the effects of both lipids on the fluidity of the vesicle membrane (measured by fluorescence polarization of diphenylhexatriene), were closely correlated with their effects on PC transfer activity. Increase in vesicle size, and decrease in bilayer curvature, also reduced transfer: the largest vesicles had no transfer activity at all. Addition of phosphatidic acid up to 17 mol% had no effect on PC transfer. HDL apolipoprotein lysyl residues were chemically modified by reductive methylation, citraconylation, or acetoacetylation. The effects of modification on the apolipoprotein structure and on the HDL particle were assessed by intrinsic fluorescence measurements, SDS-polyacrylamide gel electrophoresis patterns, and gel chromatography. Only acetoacetylation significantly affected any of these parameters. The ability of HDL to accept PC in the absence of phospholipid transfer protein decreased with an increase in apolipoprotein negative charge while, in the presence of phospholipid transfer protein, the acceptor ability of HDL increased up to 1.7-fold with an initial increase in negative charge and then decreased, ultimately to zero, upon extensive modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号