首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Parvibaculum lavamentivorans DS-1T utilized the commercial surfactant linear alkylbenzenesulfonate (LAS) (20 congeners with C10 to C13 side chains) as a carbon and energy source by shortening the side chain, and sulfophenylcarboxylates (SPCs) and similar compounds (e.g., α,β-unsaturated SPCs [SPC-2Hs]) were excreted with quantitative recovery of the sulfophenyl moiety. 2-(4-Sulfophenyl)decane (2-C10-LAS) was converted largely to 3-(4-sulfophenyl)butyrate (3-C4-SPC), as were 2-C12-LAS and 2-C14-LAS; the other products were 5-C6-SPC (SPC+2C) and 3-C4-SPC-2H. 2-C11-LAS was converted largely to 4-C5-SPC with the corresponding SPC+2C and SPC-2H; similarly, 3-C12-LAS yielded 4-C6-SPC with the corresponding SPC+2C and SPC-2H. This pattern of products confirmed that LAS is degraded by ω-oxygenation and chain shortening through β-oxidation. At least nine major SPCs were formed from commercial LAS. The novel isolates Comamonas testosteroni SPB-2 and KF-1 utilized 3-C4-SPC; Delftia acidovorans SPH-1 utilized 4-C6-SPC enantioselectively. The substrate-dependent oxygen uptake of whole cells of strain SPB-2 indicated that there was inducible oxygenation of 3-C4-SPC and of 4-sulfophenol in whole cells of the strains of C. testosteroni during growth with 3-C4-SPC or 4-sulfophenol. The degradative pathways apparently involved 4-sulfocatechol and 4-sulfocatechol 1,2-dioxygenase. Strain SPB-2 and strain DS-1T grew together in LAS-salts medium, and only seven of the nine major SPCs were recovered. Strain SPB-2 utilized 3-C4-SPC, 3-C5-SPC, and 3-C4-SPC-2H. Strain SPH-1 grew together with strain DS-1T in LAS-salts medium, and a different set of seven major SPCs was recovered. Strain SPH-1 utilized 4-C6-SPC, 4-C5-SPC, 4-C6-SPC-2H, and 4-C5-SPC-2H. A three-member community consisting of strains DS-1T, SPB-2, and SPH-1 utilized four major SPCs. We inferred that this community mineralized the major SPCs derived from 8 of the 20 LAS congeners.  相似文献   

2.
Commercial linear alkylbenzenesulfonate (LAS) contains 20 congeners of linear alkanes (C(10) to C(13)) substituted subterminally with the 4-sulfophenyl moiety in any position from lateral to central. Parvibaculum lavamentivorans DS-1(T) degrades each of eight laterally substituted congeners [e.g., 2-(4-sulfophenyl)decane (2-C10-LAS); herein, compounds are named systematically by chain length (e.g., C(10)) and by the position of the substituent on the chain (e.g., position 2)] to a major sulfophenyl carboxylate [SPC; here 3-(4-sulfophenyl)butyrate (3-C4-SPC)] and two minor products, namely, the alpha,beta-unsaturated SPC (SPC-2H, here 3-C4-SPC-2H) and the SPC+2C (here 5-C6-SPC) species (D. Schleheck, T. P. Knepper, K. Fischer, and A. M. Cook, Appl. Environ. Microbiol. 70:4053-4063). The degradation of centrally substituted congeners by strain DS-1 was examined in this work. 5-C10-LAS yielded not only the predicted 4-C8-SPC, 4-C8-SPC-2H, and 6-C10-SPC (about 70% of products) but also sulfophenyl dicarboxylates (SPdC), i.e., C6-, C8-, and C10-SPdC. These were identified by electrospray ionization-mass spectrometry (ESI-MS) after separation by high-pressure liquid chromatography (HPLC). ESI ion-trap MS and ESI-time of flight-MS were used to confirm the identities of key intermediates. Different mixtures of congeners obtained by separation of commercial LAS by HPLC were degraded, and the degradative products were compared. If a congener carried the sulfophenyl substituent on the 5, 6, or 7 position, SPdCs were formed as well as SPC, SPC-2H, and SPC+2C, whereas the substituent on the 2, 3, or 4 position yielded only SPC, SPC-2H, and SPC+2C. Some 50 products were generated from the 20 LAS congeners: 11 major SPCs, each with an SPC-2H and an SPC+2C (i.e., 33 SPC and SPC-2H species), and about 17 SPdC species. A large array of compounds, many in low quantities, is thus generated by P. lavamentivorans DS-1 during the degradation of commercial LAS.  相似文献   

3.
Commercial linear alkylbenzenesulfonate (LAS) contains 20 congeners of linear alkanes (C10 to C13) substituted subterminally with the 4-sulfophenyl moiety in any position from lateral to central. Parvibaculum lavamentivorans DS-1T degrades each of eight laterally substituted congeners [e.g., 2-(4-sulfophenyl)decane (2-C10-LAS); herein, compounds are named systematically by chain length (e.g., C10) and by the position of the substituent on the chain (e.g., position 2)] to a major sulfophenyl carboxylate [SPC; here 3-(4-sulfophenyl)butyrate (3-C4-SPC)] and two minor products, namely, the α,β-unsaturated SPC (SPC-2H, here 3-C4-SPC-2H) and the SPC+2C (here 5-C6-SPC) species (D. Schleheck, T. P. Knepper, K. Fischer, and A. M. Cook, Appl. Environ. Microbiol. 70:4053-4063). The degradation of centrally substituted congeners by strain DS-1 was examined in this work. 5-C10-LAS yielded not only the predicted 4-C8-SPC, 4-C8-SPC-2H, and 6-C10-SPC (about 70% of products) but also sulfophenyl dicarboxylates (SPdC), i.e., C6-, C8-, and C10-SPdC. These were identified by electrospray ionization-mass spectrometry (ESI-MS) after separation by high-pressure liquid chromatography (HPLC). ESI ion-trap MS and ESI-time of flight-MS were used to confirm the identities of key intermediates. Different mixtures of congeners obtained by separation of commercial LAS by HPLC were degraded, and the degradative products were compared. If a congener carried the sulfophenyl substituent on the 5, 6, or 7 position, SPdCs were formed as well as SPC, SPC-2H, and SPC+2C, whereas the substituent on the 2, 3, or 4 position yielded only SPC, SPC-2H, and SPC+2C. Some 50 products were generated from the 20 LAS congeners: 11 major SPCs, each with an SPC-2H and an SPC+2C (i.e., 33 SPC and SPC-2H species), and about 17 SPdC species. A large array of compounds, many in low quantities, is thus generated by P. lavamentivorans DS-1 during the degradation of commercial LAS.  相似文献   

4.
Biodegradation of the laundry surfactant linear alkylbenzenesulfonate (LAS) involves complex bacterial communities. The known heterotrophic community has two tiers. First, all LAS congeners are oxygenated and oxidized to about 50 sulfophenylcarboxylates (SPC). Second, the SPCs are mineralized. Comamonas testosteroni KF-1 mineralizes 3-(4-sulfophenyl)butyrate (3-C4-SPC). During growth of strain KF-1 with 3-C4-SPC, two transient intermediates were detected in the culture medium. One intermediate was identified as 4-sulfoacetophenone (SAP) (4-acetylbenzenesulfonate) by nuclear magnetic resonance (NMR). The other was 4-sulfophenol (SP). This information allowed us to postulate a degradation pathway that comprises the removal of an acetyl moiety from (derivatized) 3-C4-SPC, followed by a Baeyer-Villiger monooxygenation of SAP and subsequent ester cleavage to yield SP. Inducible NADPH-dependent SAP-oxygenase was detected in crude extracts of strain KF-1. The enzyme reaction involved transient formation of 4-sulfophenol acetate (SPAc), which was completely hydrolyzed to SP and acetate. SP was subject to NADH-dependent oxygenation in crude extract, and 4-sulfocatechol (SC) was subject to oxygenolytic ring cleavage. The first complete degradative pathway for an SPC can now be depicted with 3-C4-SPC: transport, ligation to a coenzyme A (CoA) ester, and manipulation to allow abstraction of acetyl-CoA to yield SAP, Baeyer-Villiger monooxygenation to SPAc, hydrolysis of the ester to acetate and SP, monooxygenation of SP to SC, the ortho ring-cleavage pathway with desulfonation, and sulfite oxidation.Linear alkylbenzenesulfonate (LAS) is the major synthetic laundry surfactant worldwide, with an annual production of 2.5 × 106 tonnes, which in Germany means 3 g of LAS per person and day, or about 4% of the carbon entering the sewage works (e.g., see reference 15); hence, its degradation is important. European LAS surfactant is nominally a mixture of 20 congeners, each of which is a linear alkane (C10-C13) subterminally substituted with a 4-sulfophenyl moiety (15) (Fig. (Fig.1);1); 18 of these congeners are chiral.Open in a separate windowFIG. 1.Flow diagram of the primary degradation by P. lavamentivorans DS-1 of two LAS congeners to six SPCs, four of which are mineralized by C. testosteroni KF-1. None of the reactions or pathways indicated in strain DS-1 has been observed directly. None of the reactions in strain KF-1 has been observed directly, though 4-sulfophenol is a growth substrate (28): the major unknown in SPC degradation is the manipulation of the side chain.Mineralization of LAS has been known for 50 years (25), and the involvement of sulfophenylcarboxylates (SPCs) (Fig. (Fig.1)1) as intermediates in that process has been known for about 40 years (33). Recognition that the overall degradation of LAS involved communities of microorganisms developed 10 to 15 years ago (36), when routine high-performance liquid chromatography (HPLC) analysis of LAS and SPC in biological samples became available (16, 20). The coupling of HPLC technology to mass spectrometers has allowed the analysis of the transient SPC intermediates to be further improved (e.g., see references 7 and 19), such that we now have a comprehensive picture of some 50 SPC-like products (mostly chiral) formed from commercial LAS by the first-tier organism in an LAS-degrading bacterial community (27).A heterotrophic, bacterial, LAS-degrading community comprises two tiers. The first tier of organisms, which is so far represented only by Parvibaculum lavamentivorans DS-1 (6, 12, 27-29), converts all LAS congeners to about 50 SPCs (and related compounds, see below) and cell material derived from the acetyl coenzyme A (acetyl-CoA) released through β-oxidation from the alkane moiety. In principle, each LAS congener yields three products that are released by strain DS-1, an SPC, an α,β-unsaturated SPC (SPC-2H), and an SPC from the previous round of β-oxidation (SPC+2C) (Fig. (Fig.1)1) (27, 28); sulfophenyl-di-carboxylates (SPdCs) are generated by β-oxidation of both ends of the alkane chain, e.g., from the “centrally substituted” 4- and 5-C10-LAS congeners (Fig. (Fig.1)1) (27), but these products are not relevant in this work. The second tier of organisms degrades these SPCs (and SPC-2Hs and SPdCs) to cell material, CO2, water, and sulfate (28). In this tier, many different organisms must be active because all known representatives have a narrow substrate spectrum of only 3 to 4 individual SPC-like compounds (28, 30; Results). The present work centers on Comamonas testosteroni KF-1, which utilizes four known SPC-like compounds (Fig. (Fig.1),1), 3-(4-sulfophenyl)butyrate (3-C4-SPC), 3-(4-sulfophenyl)-Δ2-enoylbutyrate (3-C4-SPC-2H), 3-(4-sulfophenyl)pentanoate (3-C5-SPC), and 3-(4-sulfophenyl)-Δ2-enoylpentanoate (3-C5-SPC-2H). This work is focused on the metabolism of 3-C4-SPC. Strain KF-1 utilizes both the (R)- and (S)-enantiomers of 3-C4-SPC (28), and this degradation may be enantioselective, resulting in different reaction rates (22), as observed for degradation of (R,S)-2-C4-SPC and (R,S)-4-C6-SPC by isolated Delftia acidovorans strains (28, 30).We now report that C. testosteroni KF-1 utilized 3-C4-SPC with transient excretion of two degradation intermediates, whose identification allowed us for the first time to draft a complete degradative pathway for an SPC.  相似文献   

5.
6.
AIMS: The aims were to test whether Parvibaculum lavamentivoransT degraded commercial linear alkylbenzenesulphonate (LAS) surfactant via omega-oxygenation and beta-oxidation to sulphophenylcarboxylates (SPCs), whether the organism was widespread and reisolable, and whether the degradative community used the 4-sulphocatechol 1,2-dioxygenase to cleave the aromatic ring from LAS. METHODS AND RESULTS: Heterotrophic P. lavamentivoransT converted LAS (side chain length C10-C13) to SPCs (C4-C13), alpha,beta-unsaturated SPCs (C4-C13) and sulphophenyldicarboxylates (SPdCs) (at least C8-C12). Identifications came from high performance liquid chromatography (HPLC) separation, an electrospray interface and mass spectrometry. No evidence for other paths was found. The degradation of LAS in trickling filters inoculated with environmental samples always showed transient SPC intermediates (HPLC) and the presence of the P. lavamentivorans morphotype in the community. One new isolate was obtained. A community able to mineralize LAS contained 4-sulphocatechol-1,2-dioxygenase at high specific activity. CONCLUSIONS: Parvibaculum lavamentivoransT degrades commercial LAS via omega-oxygenation, oxidation and chain shortening through beta-oxidation to yield a wide range of SPCs. The latter are degraded in bacterial communities which contain organisms like P. lavamentivorans, and which utilize sulphocatechol dioxygenase for ring cleavage. SIGNIFICANCE AND IMPACT OF THE STUDY: There is one widespread pathway to degrade LAS. Any traces of LAS and larger amounts of SPCs in the effluent from sewage works are exposed to degradative organisms in acclimated and pristine environments. These degradative reactions can now be studied in pure cultures.  相似文献   

7.
Enrichment cultures with enantiomeric 2-(4-sulfophenyl)butyrate (SPB) as the sole added source(s) of carbon and energy for growth yielded a pure culture of a degradative bacterium, which was identified as Delftia acidovorans SPB1. The organism utilized the enantiomers sequentially. R-SPB was utilized first (specific growth rate [mu] = 0.28 h(-1)), with transient excretion of an unknown intermediate, which was identified as 4-sulfocatechol (4SC). Utilization of S-SPB was slower (mu = 0.016 h(-1)) and was initiated only after the first enantiomer was exhausted. Suspensions of cells grown in S-SPB excreted 4SC, so metabolism of the two enantiomers converged at 4SC. The latter was degraded by ortho cleavage via 3-sulfo-cis,cis-muconate. Strain SPB1 grew with 4SC and with 1-(4-sulfophenyl)octane (referred to herein as model LAS) but not with commercial linear alkylbenzenesulfonate (LAS) surfactant, which is subterminally substituted but nontoxic. It would appear that metabolism of the model LAS does not represent metabolism of commercial LAS.  相似文献   

8.
Synthetic polymeric constructions (SPCs) including the consensus sequence of the human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein gp120 V3 loop (GPGRAF) blocked the fusion between HIV-1- and HIV-2-infected cells and CD4+ uninfected cells. A structure-activity relationship study using V3 SPC analogs showed that the most efficient inhibitor of cell fusion was an eight-branched SPC with the hexapeptide motif GPGRAF (i.e., [GPGRAF]8-SPC). N-terminal acetylation or incorporation of D-amino acids in the GPGRAF sequence of this SPC resulted in significant loss of activity. Analogs with fewer than six residues in the motif (i.e., GPGRA or GPGR), as well as SPCs with a nonrelevant sequence, did not inhibit cell fusion, demonstrating the high specificity of the antifusion activity. [GPGRAF]8-SPC, which was not toxic to CEM cells at concentrations of up to 50 microM, inhibited 50% of HIV-1(LAI) replication in these cells at a concentration of 0.07 microM. Moreover, [GPGRAF]8-SPC inhibited the infection of human peripheral blood mononuclear cells by several HIV-1 and HIV-2 isolates, including laboratory strains [HIV-1(LAI), HIV-1(NDK), and HIV-2(ROD)], and fresh primary isolates, including two zidovudine-resistant HIV-1 isolates and two HIV-2 isolates obtained from infected individuals. The multibranched peptide also inhibited infection of human primary macrophages by the highly cytopathic macrophage-tropic isolate HIV-1(89.6). The antiviral activity of [GPGRAF]8-SPC was not related to a virucidal effect, since preincubation of HIV-1 with the peptide did not affect its infectious titer. This result is in agreement with the concept that the multibranched peptide mimics a part of the V3 loop and thus interacts with the host cell. The therapeutic properties of synthetic multibranched peptides based on the V3 loop consensus motif should be evaluated in HIV-infected patients.  相似文献   

9.
Enrichment cultures with enantiomeric 2-(4-sulfophenyl)butyrate (SPB) as the sole added source(s) of carbon and energy for growth yielded a pure culture of a degradative bacterium, which was identified as Delftia acidovorans SPB1. The organism utilized the enantiomers sequentially. R-SPB was utilized first (specific growth rate [μ] = 0.28 h−1), with transient excretion of an unknown intermediate, which was identified as 4-sulfocatechol (4SC). Utilization of S-SPB was slower (μ = 0.016 h−1) and was initiated only after the first enantiomer was exhausted. Suspensions of cells grown in S-SPB excreted 4SC, so metabolism of the two enantiomers converged at 4SC. The latter was degraded by ortho cleavage via 3-sulfo-cis,cis-muconate. Strain SPB1 grew with 4SC and with 1-(4-sulfophenyl)octane (referred to herein as model LAS) but not with commercial linear alkylbenzenesulfonate (LAS) surfactant, which is subterminally substituted but nontoxic. It would appear that metabolism of the model LAS does not represent metabolism of commercial LAS.  相似文献   

10.
新疆幼畜和人非典型轮状病毒的调查和鉴定   总被引:3,自引:0,他引:3  
王正党  单文鲁 《病毒学报》1995,11(4):336-341
  相似文献   

11.
Parvibaculum lavamentivorans T DS-1, an aerobic, heterotrophic bacterium, requires a biofilm on a solid surface (e.g. glass particles) when utilizing commercial linear alkylbenzenesulfonate surfactant (LAS; 20 congeners) for growth. Catabolism involves the undefined ‘ω-oxygenation’ and β-oxidation of the LAS side chain, and the organism excretes sulfophenyl carboxylates (SPC) quantitatively. A 3.5-l fermenter was developed which allowed gram-quantities of LAS-grown cells to be grown and harvested from medium with glass particles as the solid support. The catabolism of LAS was dominant: in diauxie experiments with acetate as second carbon source, LAS was utilized first. The biofilm-encoated LAS-grown cells were unsuitable for metabolic work in vitro because cell suspensions clumped and were not disrupted effectively, but the degradative enzymes were found to be expressed constitutively in acetate-grown cells, which formed no biofilm. LAS-dependent oxygen uptake was measured in acetate-grown cells at about 0.6 mkat (kg protein)−1, but not in extracts of cells. Whole cells converted LAS to SPC in the presence of molecular oxygen only, and the reaction could be saturably inhibited by metyrapone, which acts on e.g. cytochromes P450 (CYP). However, despite the presence of CYP153-like sequences in the genome of strain DS-1T, the difference spectra did not support the presence of a CYP in crude extracts, and the nature of the LAS-oxygenase remains unclear.  相似文献   

12.
The surfactant linear alkylbenzenesulfonate (LAS; 0.5 mM) or linear monoalkyldiphenyletherdisulfonate (LADPEDS; 0.5 mM) in salts medium was easily degraded in laboratory trickling filters, whereas carbon-limited, aerobic enrichment cultures in suspended culture with the same inocula did not grow. We took portions of the trickling filters which degraded LADPEDS, shook the organisms from the solid support (polyester), and found that growth in suspended culture in LADPEDS-salts medium occurred only in the presence of some solid support (polyester fleece or glass wool), though little biomass was immobilized on the support. The end products in suspended culture were identical with those from the trickling filters. There was low plating efficiency of LADPEDS-grown cultures on complex medium, and no picked colony or mixture of colonies grew in LADPEDS-salts-glass wool medium. However, selective plates containing LADPEDS-salts medium solidified with agarose yielded LADPEDS-dependent, pinpoint colonies which could be picked singly and subcultured in selective liquid medium. Isolate DS-1 was a bacterium which showed 93% sequence homology (16S ribosomal DNA) to its nearest phylogenetic neighbor, an alpha-proteobacterium. Strain DS-1 grew heterotrophically in LADPEDS-salts-glass wool medium and converted the set of aryl-substituted alkanes to the corresponding aryl-substituted carboxylic acids of shorter chain length. Similarly, strain DS-1 grew heterotrophically with commercial LAS, converting it to a set of sulfophenylcarboxylates. Growth with a single isomer of LAS [3-(4-sulfophenyl)dodecane] was concomitant with excretion of 4-(4-sulfophenyl)hexanoate, which was identified by matrix-assisted laser desorption ionization mass spectrometry. The growth yield (6.4 g of protein/mol of C) indicated mass balance, which, with the specific growth rate (0.05 h(-1)), indicated a specific utilization rate of LAS of 2.2 mkat/kg of protein.  相似文献   

13.
The surfactant linear alkylbenzenesulfonate (LAS; 0.5 mM) or linear monoalkyldiphenyletherdisulfonate (LADPEDS; 0.5 mM) in salts medium was easily degraded in laboratory trickling filters, whereas carbon-limited, aerobic enrichment cultures in suspended culture with the same inocula did not grow. We took portions of the trickling filters which degraded LADPEDS, shook the organisms from the solid support (polyester), and found that growth in suspended culture in LADPEDS-salts medium occurred only in the presence of some solid support (polyester fleece or glass wool), though little biomass was immobilized on the support. The end products in suspended culture were identical with those from the trickling filters. There was low plating efficiency of LADPEDS-grown cultures on complex medium, and no picked colony or mixture of colonies grew in LADPEDS-salts-glass wool medium. However, selective plates containing LADPEDS-salts medium solidified with agarose yielded LADPEDS-dependent, pinpoint colonies which could be picked singly and subcultured in selective liquid medium. Isolate DS-1 was a bacterium which showed 93% sequence homology (16S ribosomal DNA) to its nearest phylogenetic neighbor, an α-proteobacterium. Strain DS-1 grew heterotrophically in LADPEDS-salts-glass wool medium and converted the set of aryl-substituted alkanes to the corresponding aryl-substituted carboxylic acids of shorter chain length. Similarly, strain DS-1 grew heterotrophically with commercial LAS, converting it to a set of sulfophenylcarboxylates. Growth with a single isomer of LAS [3-(4-sulfophenyl)dodecane] was concomitant with excretion of 4-(4-sulfophenyl)hexanoate, which was identified by matrix-assisted laser desorption ionization mass spectrometry. The growth yield (6.4 g of protein/mol of C) indicated mass balance, which, with the specific growth rate (0.05 h−1), indicated a specific utilization rate of LAS of 2.2 mkat/kg of protein.  相似文献   

14.
Summary Synthetic polymeric constructions (SPCs) containing the consensus sequence of the HIV-1 surface envelope gycoprotein gp120 V3 loop (GPGRAF) block the fusion between HIV-1- and HIV-2-infected cells and CD4+-uninfected lymphocytes. By testing the activity of a series of SPC analogs in a cell-to-cell fusion assay, we found that the most active construction is an eight-branched SPC with the hexapeptide motif GPGRAF. This compound is also able to inhibit the infection of human lymphocytes and macrophages by unrelated isolates of HIV-1 and HIV-2. This antiviral activity is specific, since no toxicity was observed at the concentrations that inhibit HIV replication and syncytia formation. These data suggest that V3 SPCs may represent a new class of therapeutic anti-HIV agents, able to neutralize a wide range of viral isolates in infected individuals.  相似文献   

15.
16.
Adult tissue maintenance is often dependent on resident stem cells; however, the phenotypic and functional heterogeneity existing within this self-renewing population is poorly understood. Here, we define distinct subsets of undifferentiated spermatogonia (spermatogonial progenitor cells; SPCs) by differential response to hyperactivation of mTORC1, a key growth-promoting pathway. We find that conditional deletion of the mTORC1 inhibitor Tsc2 throughout the SPC pool using Vasa-Cre promotes differentiation at the expense of self-renewal and leads to germline degeneration. Surprisingly, Tsc2 ablation within a subset of SPCs using Stra8-Cre did not compromise SPC function. SPC activity also appeared unaffected by Amh-Cre-mediated Tsc2 deletion within somatic cells of the niche. Importantly, we find that differentiation-prone SPCs have elevated mTORC1 activity when compared to SPCs with high self-renewal potential. Moreover, SPCs insensitive to Tsc2 deletion are preferentially associated with mTORC1-active committed progenitor fractions. We therefore delineate SPC subsets based on differential mTORC1 activity and correlated sensitivity to Tsc2 deletion. We propose that mTORC1 is a key regulator of SPC fate and defines phenotypically distinct SPC subpopulations with varying propensities for self-renewal and differentiation.  相似文献   

17.
The white rot fungus Phanerochaete chrysosporium, which generally mineralizes substituted aromatics to CO2, transformed linear alkylbenzene sulfonate (LAS) surfactants mainly at their alkyl side chain. Degradation of LAS was evidenced by a zone of clearing on LAS-containing agar plates and colorimetric analysis of liquid cultures. Disappearance of LAS was virtually complete within 10 days in low nitrogen (2.4 mM N), high nitrogen (24 mM N) and malt extract (ME) liquid media. After 5 days of incubation in ME medium, transformation of LAS was complete at concentrations4 mg l-1, but decreased at higher concentrations. The LAS degradation was not dependent on lignin peroxidases (LiPs) and manganese-dependent peroxidases (MnPs). Mineralization of14C-ring-LAS to 14CO2 by P. chrysosporium was <1% regardless of the culture conditions used. Thin layer chromatography and mass spectral analyses indicated that P. chrysosporium transformed LAS to sulfophenyl carboxylates (SPCs) through oxidative shortening of the alkyl side-chains. While LAS disappearance in the cultures was not dependent on LiPs and MnPs, transformation of the parent LAS moieties to SPCs was more extensive in low N medium that favors expression of these enzymes. The SPCs produced in LN cultures were shorter in chain-length than those produced in ME cultures. Also there was a notable shift in the relative abundance of odd and even chain length metabolites compared to the starting LAS particularly in the low N cultures suggesting the possible involvement of processes other than or in addition to-oxidation in the chain-shortening process.  相似文献   

18.
The SPCs (subtilisin-like pro-protein convertases) are a family of enzymes responsible for the proteolytic processing of numerous precursor proteins of the constitutive and regulated secretory pathways. SPCs are themselves synthesized as inactive zymogens. Activation of SPCs occurs via the intramolecular autocatalytic removal of the prodomain. SPC prodomains have been proposed as templates in the development of potent and specific SPC inhibitors. In this study, we investigated the specificity and potency of complete prodomains and short C-terminal prodomain peptides of each SPC on highly purified, soluble enzyme preparations of human SPC1, SPC6, and SPC7. Progress curve kinetic analysis of prodomain peptides and complete prodomains showed competitive inhibitory profiles in the low nanomolar range. Complete prodomains were 5-100 times more potent than C-terminal prodomain peptides, suggesting that N-terminal determinants are involved in the recognition process. However, complete prodomains and prodomain peptides exhibit only a partial specificity toward their cognate enzyme. Ala-scan structure activity studies indicated the importance of basic residues in the P(4), P(5), and P(6) positions for inhibition of SPC1. In contrast, hydrophobic residues in P(6) and P(7), as well as basic residues in P(4) and P(5), were critical for inhibition of SPC7. Our data demonstrated that the use of prodomains as specific inhibitors acting in trans would be of limited usefulness, unless modified into more specific compounds.  相似文献   

19.
The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating DS-1-like G2P[4], bovine-like human, and/or bovine rotaviruses. Overall, the great genomic diversity among the DS-1-like G1P[8] strains seemed to have been generated through reassortment involving human and animal strains. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like intergenogroup reassortant strains having G3P[8] and G2P[8] genotypes that have emerged in Thailand. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] strains and related reassortant ones.  相似文献   

20.
SPCs (subtilisin-like proprotein convertases) are a family of seven structurally related serine endoproteases that are involved in the proteolytic activation of proproteins. In an effort to examine the substrate protein for PACE4 (paired basic amino-acid-cleaving enzyme-4), an SPC, a potent protein inhibitor of PACE4, an alpha1-antitrypsin RVRR (Arg-Val-Arg-Arg) variant, was expressed in GH4C1 cells. Ectopic expression of the RVRR variant caused accumulation of the 48 kDa protein in cells. Sequence analysis indicates that the 48 kDa protein is a putative Ca2+-binding protein, RCN-3 (reticulocalbin-3), which had previously been predicted by bioinformatic analysis of cDNA from the human hypothalamus. RCN-3 is a member of the CREC (Cab45/reticulocalbin/ERC45/calumenin) family of multiple EF-hand Ca2+-binding proteins localized to the secretory pathway. The most interesting feature of the RCN-3 sequence is the presence of five Arg-Xaa-Xaa-Arg motifs, which represents the target sequence of SPCs. Biosynthetic studies showed that RCN-3 is transiently associated with proPACE4, but not with mature PACE4. Inhibition of PACE4 maturation by a Ca2+ ionophore resulted in accumulation of the proPACE4-RCN-3 complex in cells. Furthermore, autoactivation and secretion of PACE4 was increased upon co-expression with RCN-3. Our findings suggest that selective and transient association of RCN-3 with the precursor of PACE4 plays an important role in the biosynthesis of PACE4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号