首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The surface sediment diatom analysis of 28 Algoma lakes (pH 4.40–8.13) indicates that even though each lake has a widely different aquatic environment and characteristic diatom assemblage, a definite relationship exists between the lake water pH and their diatom assemblages. In the acidic lakes acidobiontic and acidophilous diatom species predominate whereas in circumneutral and alkaline lakes circumneutral and alkaliphilous diatoms were most common. Cluster analysis of the pH indicator diatom assemblages grouped the study lakes into three distinct cluster groups. These groups also closely corresponded to lake water pH. On the basis of published ecological information as well as their presence in our study lakes, the pH indicator status of a number of diatom taxa have been discussed. A detailed listing of the diatom taxa identified and their pH indicator status is provided in order to facilitate their use in future diatom-inferred pH studies.  相似文献   

2.
SUMMARY. 1. Constrained cluster analysis of thirty-five surface sediment diatom assemblages shows that Lough Erne, a complex multi-basin lake in Northern Ireland, can be sub-divided into four main zones.
2. All areas of the lake system have planktonic diatoms typical of eutrophic lakes but the lack of small Stephanodiscus species in zone 4 suggests that this area of the system is least productive.
3. Surface sediment diatom assemblages can be used to assess spatial variations in complex lake systems and can thereby be used as a guide to the choice of sites for water quality monitoring and sediment coring.  相似文献   

3.
Diatoms are commonly and frequently used as water quality indicators, but only a few studies have been done to evaluate the importance of littoral, contemporary diatoms as bioindicators. This study aims to determine the main predictors of diatom community composition from 73 Swedish lakes. Canonical correspondence analysis (CCA) revealed pH, phosphate, nitrite/nitrate levels, longitude and percentage of forest in the catchment to be the most important factors of 51 environmental variables for structuring diatom assemblages. Cluster analysis separated the lakes into three groups based on the diatom community composition. Lakes belonging to these groups were characterised as: (1) acidic, nutrient-poor; (2) circumneutral, nutrient-poor and (3) alkaline, nutrient-rich, according to the results of a discriminant function analysis and dominant diatom taxa revealed by similarity percentage analysis. Ecological guilds according to growth morphology and the ability of nitrogen-fixation were assigned to all diatom taxa. All three lake groups exhibited a distinct guild composition. Nitrogen-fixing diatoms were found in nutrient-rich lakes, only. Our results indicate that taxonomical composition of littoral diatom assemblages can be applied in the assessment of nutrient and acidity status of Swedish lakes. Differences in distribution of the ecological guilds were connected to several environmental factors such as nutrients, light and grazing; their application in assessment of trophic status of lakes is therefore precarious.  相似文献   

4.
Diatom indicators of wetland condition were developed and tested by assessing human disturbance, water chemistry, and species composition of benthic, epiphytic, and planktonic diatoms from 20 wetlands sampled for 2 years. One sample from each site was randomly selected to form a development data set, while the rest were used as the test data set. Human disturbance indicated substantial differences among wetlands in hydrologic modification, impervious surface, and potential for non-point source contamination. These landscape alterations were related to increases in pH, non-nutrient ions, and nutrients and decreases in dissolved organic carbon and water color. Pre-existing diatom indicators, calculated with autecological information from lakes and aquatic habitats, correlated highly to relevant water chemistry and human disturbance scores. Weighted average models (WAM) of Cl, conductivity, pH, and alkalinity derived with the Maine development data set correlated to relevant water chemistry and human disturbance of the test wetlands. Diatom assemblage attributes that correlated with human disturbance were selected to combine into a multimetric index of biotic condition (IBC). IBCs and WAMs from benthic and epiphytic diatoms were usually more precisely related to relevant environmental factors than planktonic diatoms. These results showed that human disturbance alkalized wetlands, enriched them with nutrients, and diatom assemblages responded to these changes. Indicator development protocols for streams can be readily adapted for use in wetlands.  相似文献   

5.
The relationship between surface sediment diatoms and summer water quality was investigated at 49 lakes in the middle and lower reaches of the Yangtze River. Lakes ranging from oligomesotrophic to hypereutrophic were examined, providing an obvious nutrient gradient. With the shift from mesotrophic to eutrophic levels, diatom multi-ecotypes dominated by epiphytic and facultative planktonic taxa were replaced by nutrient-tolerant planktonic taxa, such as Cyclotella meneghiniana Skvortzow, C. atomus Hustedt,Cyclostephanos Round, and Stephanodiscus Ehrenberg etc., reflecting the nutrient changes in the lake.The relationship between diatoms and summer water quality indices was explored further using numeric analysis. Canonical correspondence analysis (CCA) with forward selection and a Monte Carlo permutation test revealed that of all 25 summer water environmental variables, total phosphorus (TP), chlorophyll a (Chzl a), Secchi depth (SD), dissolved inorganic phosphorus, C1-, SO42-, Mg2 , CO32-, and water depth were significant variables (P<0.05) in explaining diatom distributions. Of these, TP, Chl a, SD, and C1-, were the most important variables. The result of the correlation analysis also showed that a significant correlation exists among these variables, implying that these indices are either interconnected or independent in explaining the diatom data. For phosphorus-limited sites, TP was the most significant variable affecting the diatoms, also affecting changes in Chl a, SD, and iron concentrations. The independence of Chl a may be related to algal competition induced by lake eutrophication, resulting in the feedback to diatom community.In addition to TP, SD can be related to sediment disturbance by wave action and the growth of macrophytes in large shallow lakes. These relationships between diatom ecotypes and water quality provide the basis for a future quantitative reconstruction of historic lake nutrient evolution in the study area and will also provide a wealth of modern ecological knowledge that can be used to interpret fossil diatom records.  相似文献   

6.
The relationship between surface sediment diatoms and summer water quality was investigated at 49 lakes in the middle and lower reaches of the Yangtze River. Lakes ranging from oligomesotrophic to hypereutrophic were examined, providing an obvious nutrient gradient. With the shift from mesotrophic to eutrophic levels, diatom multi-ecotypes dominated by epiphytic and facultative planktonic taxa were replaced by nutrient-tolerant planktonic taxa, such as Cyclotella meneghiniana Skvortzow, C. atomus Hustedt, Cyclostephanos Round, and Stephanodiscus Ehrenberg etc., reflecting the nutrient changes in the lake. The relationship between diatoms and summer water quality indices was explored further using numeric analysis. Canonical correspondence analysis (CCA) with forward selection and a Monte Carlo permutation test revealed that of all 25 summer water environmental variables, total phosphorus (TP), chlorophyll a (Chl a), Secchi depth (SD), dissolved inorganic phosphorus, Cl–, SO42–, Mg2+, CO32–, and water depth were significant variables (P<0.05) in explaining diatom distributions. Of these, TP, Chl a, SD, and Cl–, were the most important variables. The result of the correlation analysis also showed that a significant correlation exists among these variables, implying that these indices are either interconnected or independent in explaining the diatom data. For phosphorus-limited sites, TP was the most significant variable affecting the diatoms, also affecting changes in Chl a, SD, and iron concentrations. The independence of Chl a may be related to algal competition induced by lake eutrophication, resulting in the feedback to diatom community. In addition to TP, SD can be related to sediment disturbance by wave action and the growth of macrophytes in large shallow lakes. These relationships between diatom ecotypes and water quality provide the basis for a future quantitative reconstruction of historic lake nutrient evolution in the study area and will also provide a wealth of modern ecological knowledge that can be used to interpret fossil diatom records.  相似文献   

7.
Subfossil biotic assemblages in lakes’ surface sediments have been used to infer ecological conditions across environmental gradients. Local variables are usually the major drivers of assemblage composition, but in remote oceanic islands biogeographic filters may play a significant role. To assess the contribution of local and regional filters in the composition of subfossil diatom and chironomid assemblages in surface sediments, 41 lakes in Azores archipelago were studied and related to environmental variables. Ordination techniques were used to identify the forcing factors that best explain the composition of these assemblages. Both assemblages are influenced by multiple limnological variables (conductivity, pH and nutrients). However, diatom assemblages differed mainly in the proportion of planktonic versus benthic species along lakes’ depth gradient while chironomids differed significantly among islands but not among lake depths. Thus, biogeographic filters play an important role in shaping islands’ freshwater communities, particularly insect ones, more influenced by geographic variables. Results demonstrate the accuracy and potential of biotic remains in sediments for applied studies of lake ecology, trophic status, climatic trends and ecological reconstruction and evolution of lakes. In the Azores, the application of this information for the development of inference models is envisaged as a further step to accomplish these goals.  相似文献   

8.
Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution.  相似文献   

9.
1. We hypothesized that the fishery management practices of toxaphene application and trout stocking would affect non-target organisms in lakes. Because these practices were rarely monitored in the past, cladoceran and algal assemblages were quantified in sediment cores from two lakes treated 30+ years ago to determine the long-term response of organisms near the base of the food chain. 2. Chydorids were remarkably resistant over the short term (a few years) in both the oligotrophic and eutrophic lakes despite toxaphene treatments that extirpated native fish and other invertebrates. In the oligotrophic lake (Annette Lake), six chydorid taxa were less abundant in the years following treatment, although no loss of species richness was detected. In the eutrophic lake (Chatwin Lake), the dominant Chydorus cf. sphaericus declined coincident with toxaphene treatment, but longer-term declines of all taxa were probably related to food web or other changes rather than to toxaphene toxicity. Cause and effect coupling was complicated by the fact that many chydorids were present at low concentrations in some pretreatment samples. 3. The algal communities (as fossil pigments) responded to treatment differently in the two lakes. In the oligotrophic lake, planktonic diatoms, dinoflagellates and chlorophytes were replaced as dominants by deep-water or benthic blooming cryptophytes, chrysophytes and cyanobacteria. This shift occurred along with increases in large daphnids and the ‘grazing indicator’, pheophorbide a. While both lakes appear to have had enhanced pigment preservation following treatment, the eutrophic lake encountered few long-term changes in its fossil pigment assemblage. Redundancy analysis estimated that the presence or absence of stocked trout explained much of the variation in the algal assemblages, particularly in the oligotrophic lake. 4. Toxaphene remained elevated in profundal sediments from these lakes 30 and 35 years after treatment.  相似文献   

10.
Chironomid assemblages in thirty-three mountain lakes situated above tree line in the Slovakian part of the Tatra Mountains were studied during 2000–2002. Chironomid species/taxa, collected as pupal exuviae, were correlated with physical, chemical, and lake morphometry variables of 22 lakes. Two-way indicator species analysis (TWINSPAN) was used to classify the lakes into four distinct groups: higher situated alpine lakes, lower situated alpine lakes, subalpine lakes and acidified lakes. Presence/absence of eight taxa was identified as indicative for this classification. In discriminant function analysis, pH, dissolved organic carbon, altitude and lake area were the most significant variables reflecting differences among groups of lakes. This model of four variables allowed 77% success in the prediction of group membership. A multiple regression model with lake area, concentration of magnesium and total phosphorus accounted for 37% of the variance in taxa richness. Lakes with greater area contained more chironomid taxa than smaller ones. Lakes with higher alkalinity and higher trophic status tend to support more taxa. Canonical correspondence analysis (CCA) indicated that most variation in the composition of chironomid assemblages was related to pH and to altitude. The results can be used as reference data for long-term monitoring of the Tatra lakes, especially in connection with a recovery from acidification and global climatic change.  相似文献   

11.
1. Surface sediment biofilm samples from 82 Pyrenean lakes were analysed for marker pigment composition using high performance liquid chromatography (HPLC). 2. Variability in the pigment composition among lakes was investigated by multivariate statistical analyses using a large data set of factors describing lake chemical, physical, morphological and catchment characteristics. 3. Due to the widely varying light penetration in the lakes, the most significant gradient of pigment composition extended from a benthic to a planktonic signal. The most important pigments in the gradient were alloxanthin (cryptophytes marker pigment, planktonic signal) and diatoxanthin (diatoms marker pigment, benthic signal). The molar ratio between these two marker pigments was positively correlated with lake depth. 4. Chlorophyll‐a preservation was found to be positively related to light penetration and the development of an autothrophic biofilm on the surface sediment and negatively related to decreasing pH and the percentage of alpine meadows in the lake catchments. 5. Zooplankton marker pigments in the surface sediment, including grazing by‐products (e.g. phaeophorbides) and carotenoids (astaxanthin, canthaxanthin, echinenone) incorporated into their tissues, were correlated with the areal abundance of zooplankton. 6. Marker pigments for photosynthetic bacteria, BChl‐e and okenone, were found mainly in relatively shallow lakes with large catchments that are forested, probably because of their higher loading of allochthonous organic matter. 7. The evaluation of a preservation index (Chl‐a expressed as a percentage of a‐phorbins) and the alloxanthin/diatoxanthin ratios throughout the sediment record of mountain lakes can provide evidence of historical changes in the relative importance of planktonic versus benthic primary production and might ultimately be interpreted in terms of climatic or environmental changes.  相似文献   

12.
1. Until recently, the distribution of diatom species assemblages and their attributes (e.g. species richness and evenness) in relation to water depth have been identified but not quantified, especially across several lakes in a region. Here, we examined diatom assemblages in the surface sediment across a water‐depth gradient in eight small, boreal lakes in north‐western Ontario, minimally disturbed by human activities. 2. Surface‐sediment diatom assemblages were collected within each lake along a gentle slope from near‐shore to the centre deep basin of the lake, at a resolution of ~1 m water depth. Analysis of sedimentary samples provided an integrated view of assemblages that were living in the lake over several years and enabled a high‐resolution analysis of many lakes. The study lakes ranged in water chemistry, morphology and size and are located along an east–west transect approximately 250 km long in north‐western Ontario (Canada). 3. The majority of diatom species were distributed along a continuum of depth, with those taxa having similar habitat requirements forming distinct, though overlapping, assemblages. Three major zones of diatom assemblages in each lake were consistently identified: (i) a near‐shore assemblage of Achnanthes (sensu lato), Nitzschia, Cymbella (sensu lato) and other benthic species; (ii) a mid‐depth assemblage of small Fragilaria (sensu lato)/small Aulacoseira and various Navicula taxa; and (iii) a deep‐water assemblage of planktonic origin (mainly Discotella spp.). 4. The depth of the transition between assemblage zones varied between the eight lakes. The boundary between the deep‐water planktonic zone and the mid‐depth benthic zone varied according to water chemistry and was probably related to light attenuation. The boundary was deeper in lakes with the lower dissolved organic carbon and total phosphorus (TP) (i.e. less light attenuation) and vice versa. 5. Generally, species richness, species evenness and turnover rate of species as a function of depth were significantly lower in the planktonic assemblage zone in comparison with the two zones nearer the shore. Reproducibility of species and assemblage distributions across the depth gradient of the lakes illustrated that, despite potential for sediment transport, detailed ecological characterisation of diatom species can be gleaned from sedimentary data. Such data are often lacking, particularly for near‐shore benthic species.  相似文献   

13.
Diatom assemblages and limnological data were analyzed from 74 lakes spanning arctic treeline in three geographical regions of northern Russia: near the mouth of the Pechora River, on the Taimyr Peninsula, and near the mouth of the Lena River. Analysis of similarities indicated that diatom assemblages in tundra and forest lakes were significantly different from each other in all regions, with tundra lakes generally associated with higher abundances of small benthic Fragilaria Lyngbye taxa. Canonical correspondence analysis identified variables related to ion concentrations (e.g. Na + , dissolved inorganic carbon), lake depth, silica concentrations, and surface water temperatures as factors that explained significant amounts of variation in the diatom assemblages. Across treeline, the generally higher surface water temperatures of the forested lakes consistently accounted for a significant proportion of the diatom distribution patterns. Major ion concentrations also explained significant amounts of variation in the diatom assemblages across treeline for all three regions; however, regional trends were most likely influenced by local factors (i.e. ocean proximity or anthropogenic activities). The importance of climatic gradients across treeline (e.g. temperature) diatom distributions provides additional evidence that diatoms may be useful as paleoclimatic indicators. However, combination of the three calibration sets revealed that local water chemistry determinants (e.g. lithology, marine influence) overrode the influence of climatic gradients in explaining diatom distributions, suggesting that regional differences must be minimized for successful combination of geographically separate calibration sets.  相似文献   

14.
The Late-glacial and Postglacial sediments of the former Komo?any Lake in North-West Bohemia were studied by means of diatom analysis to trace the pattern of past environmental change in the lake. Several phases of lake development could be distinguished. Originally the Komo?any Lake was a eutrophic shallow water basin. The diatom succession in the early Postglacial sediment indicates alternating alkaliphilic, epiphytic and planktonic diatom communities associated with changes in water level in the basin. At the beginning of the Subatlantic period the water level began to rise and the development of planktonic diatoms, typical of small eutrophic lakes, occurred. Later, the basin became shallow again and the number of indifferent and acidophilous diatoms increased. This is typical for the final phase of the infilling process of a lake before its transformation to peatland  相似文献   

15.
16.
17.
Ollikainen  Minna  Simola  Heikki  Niinioja  Riitta 《Hydrobiologia》1993,269(1):405-413
Sedimentary diatom assemblages in two large oligotrophic clear-water lakes were analysed, to assess their present ecological state and possible eutrophication due to diffuse nutrient loading. The lakes Pyhäjärvi and Puruvesi (Finnish lake district) are proportionally large for their catchment areas which accounts for their long retention times (ca 7 and 11 yr) and oligohumic character. Pyhäjärvi was studied by pairwise comparison of surface sediment diatom assemblages collected in 1985 and 1990 at 12 sites from different parts of the lake. In Puruvesi, the stratigraphy of diatoms was analysed in two short cores from 8 m and 32 m depths.The diatom assemblages of the two lakes are rather similar, and quite distinct from the assemblages of the mesohumic large lakes of the area. Cyclotella kuetzingiana is the most common planktonic dia- tom, but Aulacoseira ambigua abounds in Pyhäjärvi at sites with local sources of eutrophication. A diverse assemblage of benthic forms, especially Fragilaria and Achnanthes spp. characterizes the shallow bottoms in both lakes.There was little change within the short-core diatom profiles of Puruvesi, but the floral composition of the 8-m and 32-m sites differed markedly. The 8-m site, with 60–70% of benthic forms, represents illuminated bottom, on which much of the buried algae have lived in situ, while the deeper site is true profundal, dominated by sedimented planktonic algae.In Pyhäjärvi there was a slight increase in the benthic diatoms from 1985 to 1990, coinciding with increased phosphorus and chlorophyll concentrations as well as Secchi depth lowering. We interprete this observation as a very early step of eutrophication, of which first the sessile algal communities of the illuminated bottom areas have benefited.  相似文献   

18.
Recent research on relationships between diatoms and pH suggests that the genus Cyclotella exhibits a strong relationship with lake acidity, being almost totally absent below pH 5.5. This decline has been used as an indicator of lake acidification in paleolimnological studies. In this study C. stelligera V.H. and C. kützingiana Thwaites were abundant in Precambrian Shield lakes with pH as low as 4.5. Cyclotella comta (Ehr.) Kütz. was found in lakes of pH < 5.5, but maximum abundance was observed in lakes of pH > 5.5. Cyclotella michiganiana Skv. was found in lakes of pH < 6.0. These results indicate that the use of C. stelligera, C. kützingiana, and possibly C. comta, in paleolimnological investigations of lake acidification, should be approached with caution. These taxa may exhibit a decline in abundance with decreasing lakewater pH, but this is partially a morphometric effect not necessarily related to anthropogenic acidification.  相似文献   

19.
A paleolimnological approach was used for the assessment of the recent eutrophication history and identification of possible reference conditions in the large, shallow, eutrophic Lake Peipsi. Lake Peipsi is the fourth largest lake by area, and the largest transboundary lake in Europe, being shared between Estonia and Russia. Lake Peipsi has been anthropogenically impacted over a longer time-scale than that covered by instrumental limnological monitoring. The 210Pb record and down-core distribution of fly-ash particles in the 40-cm core from the middle part of the lake suggest 130 years of sediment accumulation. Diatom assemblages indicate alkaline mesotrophic conditions and a well-illuminated water column, sediment pore-water fluorescence index values suggest low autochthonous productivity and a stable aquatic ecosystem similar to natural reference conditions during the second half of 19th and early 20th century. Near-synchronous stratigraphic changes including the expansion of the eutrophic planktonic diatom Stephanodiscus parvus, the appearance of new species associated with eutrophic lakes and the decrease in the relative abundance of littoral diatoms, together with changes in the fluorescence properties of sediment pore-water dissolved organic matter, imply increased nutrient availability, enlarged phytoplankton crops, reduced water-column transparency and the onset of human-induced disturbances in the lake since the mid-20th century. The most conspicuous expansion of eutrophic planktonic diatoms and maximum concentration of siliceous microfossils occur simultaneously with changes in the fluorescence indexes of pore-water dissolved organic matter, indicating a pronounced increase in the contribution of autochthonous organic matter to the lake sediment. This implies that nutrient loading and anthropogenic impact was at a maximum during the 1970s and 1980s. Sedimentary diatom flora may reflect a reduction of phosphorus loading since the 1990s. However, the absolute abundance of planktonic diatoms and sediment pore-water fluorescence index values vary greatly implying that the lake ecosystem is still rather unstable.  相似文献   

20.
Leoni  Barbara  Patelli  Martina  Nava  Veronica  Tolotti  Monica 《Aquatic Ecology》2021,55(2):607-621

In big lakes with strong anthropogenic pressure, it is usually difficult to disentangle the impacts of climate variability from those driven by eutrophication. The present work aimed at the reconstruction of change in the species distribution and density of subfossil Cladocera in Lake Iseo (Italy) in relation to climate and anthropogenic pressure. We related subfossil Cladocera species composition and density in an 80-cm sediment core collected in the pelagic zone of Lake Iseo to long-term temperature trends and phosphorus concentration inferred by diatoms frustules. The Cladocera remains detected in Lake Iseo sediment reflected the species composition and density of modern pelagic Cladocera assemblages. Cladocera rapidly respond to environmental change, and that climate change combined with eutrophication can induce changes in community composition and species density. At the beginning of twentieth century, when global warming was not yet so accentuated, the nutrient increase in water resulted as the principal driver in determining the long-term development of plankton communities and pelagic food web structure. Moreover, catchment-related processes may decisively affect both species composition and density of the lake planktonic communities due to the decrease of lake water transparency induced by input of inorganic material from the catchment area to the lake. The paleolimnological investigation, through the combined study of biotic and abiotic factor, allowed clarifying the synergic effects of the most important drivers of change in lake ecosystems, suggesting that climatic factors should be considered with nutrient availability as determinant element in controlling the temporal development of plankton communities and pelagic food web structure.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号