首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycine and serine are involved in numerous important functions in the body in addition to protein synthesis. Glycine is synthesized by higher animals; however, the rate is not adequate to support maximal growth of the chick. Studies indicate that chicks fed a glycine-serine free crystalline amino acid diet grow at approximately 80% the rate of chicks fed the same diet supplemented with glycine. An equimolar quantity of L-serine has been shown to support equal chick performance as glycine, thus indicating that serine conversion is adequate to meet the dietary need for glycine. The serine-glycine interconversion is catalyzed by the folic acid containing enzyme sering hydroxymethyltransferase, and a deficiency of this vitamin decreases the effectiveness of serine in meeting the chick's dietary need for glycine. Studies with chicks fed normal and high levels of a crystalline amino acid mixture devoid of glycine and serine indicate that the chick has the metabolic potential to synthesize more of these two amino acids than should be required for normal growth. The observed dietary response to glycine or serine or both indicates, however, that this synthetic potential is not being utilized.  相似文献   

2.
Glycine and serine are potential sources of nitrogen for the aquatic resurrection plant Chamaegigas intrepidus Dinter in the rock pools that provide its natural habitat. The pathways by which these amino acids might be utilized were investigated by incubating C. intrepidus roots and maize (Zea mays) root tips with [(15)N]glycine, [(15)N]serine and [2-(13)C]glycine. The metabolic fate of the label was followed using in vivo NMR spectroscopy, and the results were consistent with the involvement of the glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) in the utilization of glycine. In contrast, the labelling patterns provided no evidence for the involvement of serine:glyoxylate aminotransferase in the metabolism of glycine by the root tissues. The key observations were: (i) the release of [(15)N]ammonium during [(15)N]-labelling experiments; and (ii) the detection of a characteristic set of serine isotopomers in the [2-(13)C]glycine experiments. The effects of aminoacetonitrile, amino-oxyacetate, and isonicotinic acid hydrazide, all of which inhibit GDC and SHMT to some extent, and of methionine sulphoximine, which inhibited the reassimilation of the ammonium, supported the conclusion that GDC and SHMT were essential for the metabolism of glycine. C. intrepidus was observed to metabolize serine more readily than the maize root tips and this may be an adaptation to its nitrogen-deficient habitat. Overall, the results support the emerging view that GDC is an essential component of glycine catabolism in non-photosynthetic tissues.  相似文献   

3.
The efficiency with which dietary protein is used affects the nitrogen excretion by the animal and the environmental impact of animal production. Urea and uric acid are the main nitrogen excretion products resulting from amino acid catabolism in mammals and birds, respectively. Nitrogen excretion can be reduced by using low-protein diets supplemented with free amino acids to ensure that essential amino acids are not limiting performance. However, there are questions whether the capacity to synthesize certain nonessential amino acids is sufficient when low-protein diets are used. This includes glycine, which is used for uric acid synthesis. Nitrogen excretion not only implies a nitrogen and energy loss in the urine, but energy is also required to synthesize the excretion products. The objective of this study was to quantify the energy and metabolic requirements for nitrogen excretion products in the urine. The stoichiometry of reactions to synthesize urea, uric acid, allantoin, and creatinine was established using information from a publicly available database. The energy cost was at least 40.3, 60.7, 64.7, and 65.4 kJ/g excreted N for urea, uric acid, allantoin, and creatinine, respectively, of which 56, 56, 47, and 85% were retained in the excretion product. Data from a broiler study were used to carry out a flux balance analysis for nitrogen, serine, glycine, and so-called 1-carbon units. The flux balance indicated that the glycine intake was insufficient to cover the requirements for growth and uric acid excretion. The serine intake was also insufficient to cover the glycine deficiency, underlining the importance of the de novo synthesis of serine and glycine. One-carbon units are also a component of uric acid and can be synthesized from serine and glycine. There are indications that the de novo synthesis of 1-carbon units may be a “weak link” in metabolism, because of the stoichiometric dependency between the synthesized 1-carbon units and glycine. The capacity to catabolize excess 1-carbon units may be limited, especially in birds fed low-protein diets. Therefore, there may be an upper limit to the 1-carbon-to-glycine requirement ratio in relation to nutrients that supply 1-carbon units and glycine. The ratio can be reduced by increasing uric acid excretion (i.e., reducing protein deposition) or by dietary supplementation with glycine. The hypothesis that the 1-carbon-to-glycine requirement ratio should be lower than the supply ratio provides a plausible explanation for the growth reduction in low-protein diets and the positive response to the dietary glycine supply.  相似文献   

4.
Enzymes of serine biosynthesis in Rhodopseudomonas capsulata   总被引:1,自引:0,他引:1  
Rhodopseudomonas capsulata has been shown to possess all the enzymatic activities of both the phosphorylated and nonphosphorylated pathways of serine biosynthesis. In addition there was an active serine hydroxymethyltransferase which catalyzed the reversible interconversion of serine and glycine. In cells grown photosynthetically with malate as the carbon source, the activities of the phosphorylated pathway enzymes were substantially higher than the analogous reactions of the nonphosphorylated sequence. l-Serine (1 mm) caused approximately 60%, inhibition of the first enzyme of the phosphorylated route, 3-phosphoglyceric acid dehydrogenase, but was less effective in inhibiting the last enzyme, phosphoserine phosphatase. Glycine also exerted a regulatory effect on this pathway but it was not as potent an inhibitor as serine. The inhibitions caused by serine and glycine were simply additive; there was no evidence of concerted feedback inhibition of the phosphorylated pathway by these amino acids.  相似文献   

5.
An evolutionary scheme is postulated in which a primitive code, involving only guanine and cytosine, would code for glycine (GG), alanine (GC), arginine (CG) and proline (CC). From each of these amino acids and their codons, there evolves a family of related amino acids as the code expands. The four families are: (1)alanine valine, leucine, isoleucine, phenylalanine, tyrosine, methionine and tryptophane; (2)proline, threonine and serine; (3)arginine, lysine, and histidine; (4)glycine, serine, cysteine, glutamic acid, glutamine, aspartic acid and asparagine. Except for the glycine relation to glutamic acid and aspartic acid, all amino acids are related by chemical similarities in their side chains. Glycine not having a side chain would permit a more complex set of substitutions.  相似文献   

6.
An investigation of the biosynthesis pathways producing glycine and serine was necessary to clarify an apparent inconsistency between the self-referential model (SRM) for the formation of the genetic code and the model of coevolution of encodings and of amino acid biosynthesis routes. According to the SRM proposal, glycine was the first amino acid encoded, followed by serine. The coevolution model does not state precisely which the first encodings were, only presenting a list of about ten early assignments including the derivation of glycine from serine—this being derived from the glycolysis intermediate glycerate, which reverses the order proposed by the self-referential model. Our search identified the glycine-serine pathway of syntheses based on one-carbon sources, involving activities of the glycine decarboxylase complex and its associated serine hydroxymethyltransferase, which is consistent with the order proposed by the self-referential model and supports its rationale for the origin of the genetic code: protein synthesis was developed inside an early metabolic system, serving the function of a sink of amino acids; the first peptides were glycine-rich and fit for the function of building the early ribonucleoproteins; glycine consumption in proteins drove the fixation of the glycine-serine pathway.  相似文献   

7.
The present work deals with the effect of six amino acids: asparagine,aspartic acid, glutamic acid, glycine, serine, and tryptophan,on growth and gametangial formation in Riccia gangetica. Allthe amino acids tested enhance vegetative growth, and amongthese glutamic acid proves best. The total number of rhizoidsis reduced in response to amino acids. Aspartic acid and glutamicacid favour antheridial production. In contrast, asparagine,serine, and tryptophan enhance archegonial formation, and amongthese asparagine elicits the best response. Glycine proves bestfor antheridial production, and also increases the number ofarchegonia. Key words: Riccia gangetica, Amino acids, Growth, Gametangial formation  相似文献   

8.
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.  相似文献   

9.
We studied protein synthesis, lipid synthesis and CO2 production by oxidation of glycine, alanine and leucine by slices of rat hippocampus during the period of brain growth spurt. The metabolism of the three amino acids decreased with the age of the animals, A major reduction was observed in protein synthesis, which was 4 times higher at 7 days of age than at 21 days of age for all amino acids studied. Glycine oxidation to CO2 was twice as high as alanine oxidation and ten times higher than leucine oxidation. The major pathway of leucine utilization was incorporation into proteins. Glycine was the amino acid that had the highest metabolic rate.  相似文献   

10.
It was believed for long time that d-amino acids are not present in mammals. However, current technological advances and improvements in analytical instruments have enabled studies that now indicate that significant amounts of D-amino acids are present in mammals. The most abundant D-amino acids are D-serine and D-aspartate. D-Serine, which is synthesized by serine racemase and is degraded by D-amino-acid oxidase, is present in the brain and modulates neurotransmission. D-Aspartate, which is synthesized by aspartate racemase and degraded by D-aspartate oxidase, is present in the neuroendocrine and endocrine tissues and testis. It regulates the synthesis and secretion of hormones and spermatogenesis. D-Serine and D-aspartate bind to the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors and function as a coagonist and agonist, respectively. The enzymes that are involved in the synthesis and degradation of these D-amino acids are associated with neural diseases where the NMDA receptors are involved. Knockout mice for serine racemase and D-aspartate oxidase have been generated, and natural mutations in the d-amino-acid oxidase gene are present in mice and rats. These mutant animals display altered behaviors caused by enhanced or decreased NMDA receptor activity. In this article, we review currently available studies on D-amino acid metabolism in mammals and discuss analytical methods used to assay activity of amino acid racemases and D-amino-acid oxidases.  相似文献   

11.
Glycine and serine are two interconvertible amino acids that play an important role in C1 metabolism. Using 13C NMR and various 13C-labelled substrates, we studied the catabolism of each of these amino acids in non-photosynthetic sycamore cambial cells. On one hand, we observed a rapid glycine catabolism that involved glycine oxidation by the mitochondrial glycine decarboxylase (GDC) system. The methylenetetra- hydrofolate (CH2-THF) produced during this reaction did not equilibrate with the overall CH2-THF pool, but was almost totally recycled by the mitochondrial serine hydroxymethyltransferase (SHMT) for the synthesis of one serine from a second molecule of glycine. Glycine, in contrast to serine, was a poor source of C1 units for the synthesis of methionine. On the other hand, catabolism of serine was about three times lower than catabolism of glycine. Part of this catabolism presumably involved the glycolytic pathway. However, the largest part (about two-thirds) involved serine-to-glycine conversion by cytosolic SHMT, then glycine oxidation by GDC. The availability of cytosolic THF for the initial SHMT reaction is possibly the limiting factor of this catabolic pathway. These data support the view that serine catabolism in plants is essentially connected to C1 metabolism. The glycine formed during this process is rapidly oxidized by the mitochondrial GDC-SHMT enzymatic system, which is therefore required in all plant tissues.  相似文献   

12.
It is established that glycine and glycine oligohomopeptides interact with formaldehyde and acetaldehyde in a homogeneous weak acid medium (pH 3.3–3.7) at mild temperatures (60–80°C) in the absence of inorganic solid substances. Together with the expected serine and threonine, the formation of alanine, glutamic and aspartic acid, norvaline and isoleucine, as well as four non-protein amino acids is also established. It is suggested that the non-protein amino acids are hydroxymethylserine, hydroxymethylthreonine, hydroxymethylaspartic acid and γ-amino-δ-hydroxyvaleric acid. The modes of formation of all protein and non-protein amino acids are discussed. These results strengthen the probability that similar processes may have been one of the pathways for the prebiotic synthesis of amino acids on primitive Earth.  相似文献   

13.
The nonessential amino acids are involved in a large number of functions that are not directly associated with protein synthesis. Recent studies using a combination of transorgan balance and stable isotopic tracers have demonstrated that a substantial portion of the extra‐splanchnic flux of glutamate, glutamine, glycine and cysteine derives from tissue synthesis. A key amino acid in this respect is glutamic acid. Little glutamic acid of dietary origin escapes metabolism in the small intestinal mucosa. Furthermore, because glutamic acid is the only amino acid that can be synthesized by mammals by reductive amination of a ketoacid, it is the ultimate nitrogen donor for the synthesis of other nonessential amino acids. Because the synthesis of glutamic acid and its product glutamine involve the expenditure of adenosine triphosphate (ATP), it seems possible that nonessential amino acid synthesis might have a significant bearing on the energetics of protein synthesis and, hence, of protein deposition. This paper discusses the topic of the energy cost of protein deposition, considers the metabolic physiology of amino acid oxidation and nonessential amino acid synthesis, and attempts to combine the information to speculate on the overall impact of amino acid metabolism on the energy exchanges of animals.  相似文献   

14.
Seven lines of haploid Nicotiana tabacum tissue culture selected for resistance to normally toxic levels of the glycine analog glycine hydroxamate, a competitive inhibitor of the glycine decarboxylase reaction, were investigated. The presence of glycine hydroxamate greatly increased the intracellular concentration of both glycine and alanine in wild type and resistant cell lines, suggesting that the inhibitor blocks both glycine- and alanine-utilizing reactions. All the resistant cell lines, whether grown in the presence or absence of glycine hydroxamate, had high intracellular concentrations of the 12 free amino acids which were analyzed, including glycine and serine. (These lines averaged 3.6 times the total amino acid content of wild-type cells in the absence of the inhibitor). The resistant cell lines were indistinguishable from wild-type cell lines in their metabolism of radioactively labeled glycine hydroxamate and glycine. Comparison of the metabolism of radioactively labeled alanine, glycolate, and glyoxylate in wild-type and α resistant line also revealed no distinctive differences. Glycine decarboxylase activities were unaltered in the resistant cell lines. The cellular toxicity of glycine hydroxamate is considered in relation to (1) the competitive inhibition by glycine hydroxamate of the glycine- and alanine-utilizing enzymes and (2) the resultant imbalances caused by high intracellular concentrations of these amino acids. The significance of elevation of total free amino acid concentration in effecting resistance to the inhibitor is discussed.  相似文献   

15.
The nutritional values of nonessential amino acids as the nitrogen source in the crystalline amino acid diet for the chick growth were examined. The nitrogen of the nonessential amino acids in the basal diet for chick was substituted for a nonessential amino acid to be tested on the nitrogen base. The experimental methods were the same as in the evaluation of the nutritional value of d-amino acids previously reported. Nonessential amino acids were classified into four groups.
  1. Very useful nitrogen source: Glutamic acid, Aspartic acid

  2. Useful nitrogen source: Alanine, Diammonium citrate

  3. Insufficient nitrogen source: Glycine, Proline

  4. Harmful for chick growth: Serine

At the end of experiment chicks were killed and the concentration of free amino acids in the serum were measured. The concentration of glycine and serine in the serum increased when glycine was tested, but that of serine in the serum only increased when serine was tested. This result suggested the pathway from glycine to serine was fast and the opposite one was very slow.  相似文献   

16.
Biosynthesis of amino acids in Clostridium pasteurianum   总被引:4,自引:3,他引:1  
1. Clostridium pasteurianum was grown on a synthetic medium with the following carbon sources: (a) (14)C-labelled glucose, alone or with unlabelled aspartate or glutamate, or (b) unlabelled glucose plus (14)C-labelled aspartate, glutamate, threonine, serine or glycine. The incorporation of (14)C into the amino acids of the cell protein was examined. 2. In both series of experiments carbon from exogenous glutamate was incorporated into proline and arginine; carbon from aspartate was incorporated into glutamate, proline, arginine, lysine, methionine, threonine, isoleucine, glycine and serine. Incorporations from the other exogenous amino acids indicated the metabolic sequence: aspartate --> threonine --> glycine right harpoon over left harpoon serine. 3. The following activities were demonstrated in cell-free extracts of the organism: (a) the formation of aspartate by carboxylation of phosphoenolpyruvate or pyruvate, followed by transamination; (b) the individual reactions of the tricarboxylic acid route to 2-oxoglutarate from oxaloacetate; glutamate dehydrogenase was not detected; (c) the conversion of aspartate into threonine via homoserine; (d) the conversion of threonine into glycine by a constitutive threonine aldolase; (e) serine transaminase, phosphoserine transaminase, glycerate dehydrogenase and phosphoglycerate dehydrogenase. This last activity was abnormally high. 4. The combined evidence indicates that in C. pasteurianum the biosynthetic role of aspartate and glutamate is generally similar to that in aerobic and facultatively aerobic organisms, but that glycine is synthesized from glucose via aspartate and threonine.  相似文献   

17.
Anaerobic thermophilic degradation of several amino acids was studied in batch cultures using an inoculum from a steady-state semicontinuous enrichment culture. Experiments were done in the presence and absence of methanogenesis and known electron acceptors in the Stickland reaction. Methanogenesis was found to be crucial for the degradation of amino acids known to be oxidatively deaminated (leucine, valine and alanine). Other amino acids (serine, threonine, cysteine and methionine) were degraded under both methanogenic and non-methanogenic conditions. Degradation rates for these four amino acids were 1.3 to 2.2 times higher in cases where methanogenesis was active. The degradation rates of serine, threonine, cysteine and methionine were about twice as high as the rates of leucine, valine and alanine under methanogenic conditions. Inclusion of different electron acceptors, known to work in the Stickland reaction, did not enhance the degradation rates of any amino acid used nor did they alter the degradation patterns. Glycine was oxidatively deaminated to acetate, carbon dioxide, hydrogen and ammonium.  相似文献   

18.
Transport of amino acids (in vitro) in the rat pancreas is affected by the nutritional state of the animal. A fast of 24 h (young animals) or 48 h (adult animals) reduces the rate of amino acid uptake in the isolated rat pancreas in vitro. In contrast, refeeding of animals after a fast shows an increase in transport in young as well as adult animals.The effects of refeeding after a fast are mimicked to a significant extent by injection of mixtures of pancreozymin and carbamylcholine. Addition of these agents in vitro has no effect.The incorporation of amino acids into the total proteins of the rat pancreas follows the pattern of amino acid uptake. Even at high external levels of glycine (5 mM), incorporation increases although the glycine level in the cell is in excess of 25 mM. Reduction of glycine uptake by ouabain by 75% results in a substantial (44%) diminution of amino acid incorporation into proteins. The data suggest that inhibition of amino acid incorporation under the various metabolic conditions examined is due largely to a decreased availability of amino acids.  相似文献   

19.
Growth of Pseudomonas cepacia (P. multivorans) on serine depended upon induction of a previously undescribed L-serine deaminase distinct from threonine deaminase. Formation of the enzyme was induced during growth on serine, glycine, or threonine. The induction pattern reflected a role of the enzyme in catabolism of these three amino acids. Both threonine and glycine supported growth of serine auxotrophs and were presumably converted to serine and pyruvate in the course of their degradation. Mutant strains deficient in serine deaminase, or unable to use pyruvate as a carbon source, failed to utilize serine or glycine and grew poorly with threonine, whereas strains deficient in threonine dehydrogenase or alpha-amino beta-ketobutyrate:coenzyme A ligase (which together convert threonine to glycine and acetyl coenzyme A) failed to utilize threonine or derepress serine deaminase in the presence of this amino acid. The results confirm for the first time the role of alpha-amin beta-ketobutyrate:coenzyme A ligase in threonine degradation and indicate that threonine does not mimic serine as an inducer of serine deaminase.  相似文献   

20.
V A Konyshev 《Genetika》1983,19(1):17-25
The correlations between genetic codes of amino acids and pathways of synthesis and catabolism of carbon backbone of amino acids are considered. Codes of amino acids which are synthesized from oxoacids of glycolysis, the Krebs cycle and glyoxalic cycle via transamination without any additional chemical reactions, are initiated with guanine (alanine, glutamic and aspartic acids, glycine). Codons of amino acids which are formed on the branches of glycolysis at the level of compounds with three carbon atoms, begin with uracil (phenylalanine, serine, leucine, tyrosine, cysteine, tryptophan). Codes of amino acids formed from aspartate begin with adenine (methionine, isoleucine, threonine, asparagine, lysine, serine), while those of the amino acids formed from the compounds with five carbon atoms (glutamic acid and phosphoribosyl pyrophosphate) begin with cytosine (arginine, proline, glutamine, histidine). The second letter of codons is linked to catabolic pathways of amino acids: most of amino acids entering glycolysis and the Krebs cycle through even-numbered carbon compounds, have adenine and uracil at the second position of codes (A-U type); most of amino acids entering the glycolysis and the Krebs cycle via odd-numbered carbon compounds, have codons with guanine and cytidine at the second position (G-C type). The usage of purine and pyrimidine as the third letter of weak codones in most of amino acids is linked to the enthropy of amino acid formation. A hypothesis claiming that the linear genetic code was assembled from the purine and pyrimidine derivatives which have acted as participants of primitive control of amino acid synthesis and catabolism, is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号