首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Over the past 20 years, growing interest in the biochemistry, nutrition, and pharmacology of l-arginine has led to extensive studies to explore its nutritional and therapeutic roles in treating and preventing human metabolic disorders. Emerging evidence shows that dietary l-arginine supplementation reduces adiposity in genetically obese rats, diet-induced obese rats, finishing pigs, and obese human subjects with Type-2 diabetes mellitus. The mechanisms responsible for the beneficial effects of l-arginine are likely complex, but ultimately involve altering the balance of energy intake and expenditure in favor of fat loss or reduced growth of white adipose tissue. Recent studies indicate that l-arginine supplementation stimulates mitochondrial biogenesis and brown adipose tissue development possibly through the enhanced synthesis of cell-signaling molecules (e.g., nitric oxide, carbon monoxide, polyamines, cGMP, and cAMP) as well as the increased expression of genes that promote whole-body oxidation of energy substrates (e.g., glucose and fatty acids) Thus, l-arginine holds great promise as a safe and cost-effective nutrient to reduce adiposity, increase muscle mass, and improve the metabolic profile in animals and humans.  相似文献   

2.
Embryonic loss is a major problem in mammals, but there are few effective ways to prevent it. Using a porcine model, we determined effects of dietary l-arginine supplementation between days 14 and 25 of gestation on embryonic growth and survival. Gilts were checked daily for estrus with boars in the morning and bred at onset of the second estrus and 12 h later (the time of breeding = day 0 of gestation). Between days 14 and 25 of gestation, 15 gilts/treatment were housed individually and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0, 0.4, or 0.8 % l-arginine. All diets were made isonitrogenous by addition of l-alanine. On day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Compared with controls, dietary supplementation with 0.4 or 0.8 % l-arginine increased (P ≤ 0.05) arginine concentrations in maternal plasma, total volume of amniotic fluid; total amounts of arginine in allantoic and amniotic fluids; total amounts of fructose and most amino acids in amniotic fluid; placental growth; and the number of viable fetuses per litter by 2. The numbers of total fetuses, fetal weight, corpora lutea, volume of allantoic fluid, maternal circulating levels of progesterone and estrogen, or total amounts of hormones in allantoic fluid did not differ among the three treatment groups. Reproductive performance of gilts did not differ between the 0.4 and 0.8 % l-arginine groups. Thus, dietary supplementation with 0.4 or 0.8 % l-arginine between days 14 and 25 of gestation enhances embryonic/fetal survival in swine.  相似文献   

3.
Reduced nitric oxide availability and a heterogeneous pattern of nitric oxide synthase activity in some tissues have been reported in hypothyroidism. This study aimed at determining the effects of oral nitrate and l-arginine administration on serum, heart, and aorta nitric oxide metabolite concentrations in fetal hypothyroid rats. In an experimental study, pregnant Wistar rats were administrated tap water or 0.02 % of 6-propyl-2-thiouracil in drinking water during pregnancy and their male pups were followed (n?=?8/group). In adult progeny, serum, heart, and aorta nitric oxide metabolite concentrations were measured by the Griess method after 1-week administration of sodium nitrate (500 mg/L) or l-arginine (2 %) in drinking water. Serum thyroid hormone and thyroid-stimulating hormone levels were also measured. Compared to controls, fetal hypothyroid progeny had significantly lower nitric oxide metabolite concentrations in heart (0.32?±?0.07 vs. 0.90?±?0.14 nmol/mg protein, p?=?0.004) and aorta (2.98±0.56 vs. 6.15±0.74 nmol/mg protein, p?=?0.011) tissues. Nitrate therapy restored heart nitric oxide metabolite levels decreased by fetal hypothyroidism, while l-arginine administration further decreased aorta nitric oxide metabolite levels. Sodium nitrate increased and l-arginine decreased serum nitric oxide metabolite levels in both control and fetal hypothyroid animals. In conclusion, nitrate therapy restores decreased heart nitric oxide metabolite levels, whereas l-arginine decreases aorta nitric oxide metabolite levels even further in fetal hypothyroid rats, findings relevant to the cardiovascular consequences of congenital hypothyroidism in adulthood.  相似文献   

4.
The aim of this study was to evaluate effects of dietary zinc and l-arginine supplementation on blood total antioxidant capacity (TAC), malondialdehyde (MDA), nitric oxide (NO), some blood chemistry parameters, and egg weights of laying quails. Three groups of Japanese quails were fed with a diet containing l-arginine (5 mg/kg), zinc (60 mg/kg), and normal basal diet (control) for 30 days. TAC, lipid peroxidation, and biochemical analysis were performed in the blood of animals. l-Arginine and zinc supplementation improved TAC and reduced MDA concentrations compared to the control (P?<?0.05). In comparison to the control, blood NO concentrations were increased by l-arginine (P?<?0.01) and zinc treatment (P?<?0.05). Both zinc (P?<?0.001) and l-arginine (P?<?0.01) supplementation significantly increased egg weight in laying quails. Some of the blood chemistry parameters were also altered by the treatment of l-arginine and zinc supplementation. No difference was found in blood albumin and creatinine levels among the groups. Blood glucose (P?=?0.833) and total protein (P?=?0.264) levels in control and l-arginine-treated groups were found to be similar. Glucose and total protein levels were decreased in zinc-supplemented animals compared to the control and l-arginine groups (P?<?0.05). No difference was found in triglyceride levels between control and zinc-applied groups (P?=?0.197). However, l-arginine treatment reduced the blood triglyceride levels compared to the control (P?<?0.05). In conclusion, l-arginine and zinc supplementation could be beneficial and effective for decreasing oxidative stress, boosting antioxidant capacity, and improving egg weight in the blood of the animals.  相似文献   

5.
Nitric oxide (NO) is a free radical that is produced in cells from l-arginine. NO is involved in the physiological control of different tissues, but it can act as a toxic mediator in the cells. In this study we investigated the effect of l-arginine on the genotoxicity induced by methyl methanesulfonate (MMS) in human lymphocytes. Blood was treated with NG-nitro-l-arginine methyl ester (l-NAME) as an inhibitor of nitric oxide synthase for finding out the role of NO in this effect. Human whole blood was treated with l-arginine (50, 100 and 250 μM) and/or l-NAME, then it was treated in vitro with MMS after 24 h of culture. The lymphocytes were stimulated by phytohemagglutinin to find out the micronuclei in cytokinesis-blocked binucleated cells. DNA fragmentation of lymphocytes was detected by using a fluorescence microscope after propidium iodide staining. These data showed that arginine increased the frequency of MMS-induced micronuclei in lymphocytes. However, the genotoxicity was decreased by using l-NAME. Arginine and l-NAME have not shown any DNA damage in cultured human lymphocytes. In conclusion, addition of l-arginine to MMS as an alkylating agent caused an increase of DNA damage in human lymphocytes. This enhancement of genotoxicity was reduced by NAME as NO inhibitor. It is thus cleared that an increase of DNA damage by arginine and MMS is related to NO production.  相似文献   

6.
The aim of this study was to evaluate the influence of the intake of l-arginine alone and of l-arginine with vitamin C on mineral concentration in rats fed with a high-fat diet, and to assess the lipid glucose, insulin, and total antioxidant status (TAS) and tumor necrosis factor (TNF) alpha serum levels that result. Wistar rats were assigned to groups fed with either a standard control diet (C), a diet high in fat (FD), a diet high in fat with l-arginine, or a diet high in fat with l-arginine and vitamin C. After 6 weeks, the length and weight of the rats were measured, and the animals were euthanized. The liver, spleen, kidneys, pancreas, heart, and gonads were collected, as were blood samples. The total serum cholesterol, triglyceride, fasting glucose, insulin, TAS, and TNF alpha levels were measured. The tissue calcium, magnesium, iron, zinc, and copper concentrations were determined. It was found that l-arginine supplementation diminished the effect of the modified diet on the concentration of iron in the liver and spleen and of copper in heart. At the same time, it was observed that l-arginine supplementation reduced the effect of the high-fat diet on insulin, TNF alpha, and TAS. The combination of l-arginine and vitamin C produced a similar effect on the mineral levels in the tissues as did l-arginine used alone. Moreover, positive correlations between serum insulin and iron in the liver, between TNF alpha and iron in the liver, and between TNF alpha and copper in the heart were observed. The level of TAS in serum was inversely correlated with the copper level in the heart and the iron level in the liver. We concluded that the beneficial influence of l-arginine on insulin, TAS, and TNF alpha serum level is associated with changes in the iron and copper status in rats fed with a high-fat diet. No synergistic effect of l-arginine and vitamin C in the biochemical parameters or in the mineral status in rats fed with the modified diet was observed.  相似文献   

7.
l-Arginine is a semi essential amino acid synthesised from glutamine, glutamate and proline via the intestinal-renal axis in humans and most mammals. l-Arginine degradation occurs via multiple pathways initiated by arginase, nitric-oxide synthase, Arg: glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine and agmatine with each having enormous biological importance. Several disease are associated to an l-arginine impaired levels and/or to its metabolites: in particular various l-arginine metabolites may participate in pathogenesis of kidney and cardiovascular disease. l-Arginine and its metabolites may constitute both a marker of pathology progression both the rationale for manipulating l-arginine metabolism as a strategy to ameliorate these disease. A large number of studies have been performed in experimental models of kidney disease with sometimes conflicting results, which underlie the complexity of Arg metabolism and our incomplete knowledge of all the mechanisms involved. Moreover several lines of evidence demonstrate the role of l-arg metabolites in cardiovascular disease and that l-arg administration role in reversing endothelial dysfunction, which is the leading cause of cardiovascular diseases, such as hypertension and atherosclerosis. This review will discuss the implication of the mains l-arginine metabolites and l-arginine-derived guanidine compounds in kidney and cardiovascular disease considering the more recent literature in the field.  相似文献   

8.
A recombinant arginase was generated for a whole-cell biotransformation system to convert l-arginine to l-ornithine in Escherichia coli. The gene ARG1 coding arginase from Bos taurus liver was synthesized and expressed in E. coli BL21 (DE3) via pETDuet-1. The recombinant arginase was used to catalyze l-arginine to l-ornithine and urea. The reaction was optimal at pH 9.5 and 37 °C. Manganese (10?5 M) and Emulsifier OP-10 [0.033 % (v/v)] could promote arginase activity. In a scale up study, l-arginine conversion rate reached 98 % with a final concentration of 111.52 g l-ornithine/l.  相似文献   

9.
Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and l-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal l-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. l-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid–base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, l-glutamine supplementation mitigates alcohol-induced acid–base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.  相似文献   

10.
GPRC6A is a seven-transmembrane receptor activated by a wide range of l-α-amino acids, most potently by l-arginine and other basic amino acids. The receptor is broadly expressed, but its exact physiological role remains to be elucidated. It is well established that l-arginine stimulates insulin secretion; therefore, the receptor has been hypothesized to have a role in regulating glucose metabolism. In this study, we demonstrate that GPRC6A is expressed in islets of Langerhans, but activation of the receptor by l-arginine did not stimulate insulin secretion. We also investigated central metabolic parameters in GPRC6A knockout mice compared with wildtype littermates and found no difference in glucose metabolism or body fat percentage when mice were administered a standard chow diet. In conclusion, our data do not support a role for GPRC6A in l-arginine-induced insulin release and glucose metabolism under normal physiological conditions.  相似文献   

11.
Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of l-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. l-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of l-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered l-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.  相似文献   

12.
The haploid phase (myxamoebae-swarm cells) of the myxomycete Physarum flavicomum grew readily in chemically defined liquid media. The minimal medium contained salts, glucose, biotin, thiamine, hematin, glycine, l-arginine and l-methionine. Cell yields of 1.4x107 cells/ml were obtained in this medium in aerobic shake culture. These cells consumed about 35 μliters of oxygen/mg protein·hr in the minimal medium. The morphology of cells maintained in this medium appeared to be “normal”. l-valine replaced either glycine or l-methionine in the minimal medium but the growth rates and cell yields were reduced. Growth rates increased in media containing four, seven, or fourteen amino acids.  相似文献   

13.
Intracerebroventricular (i.c.v.) administration of l-aspartate (l-Asp) attenuates stress responses in neonatal chicks, but the mechanism has not been clarified. In the present study, three behavioral experiments were carried out under socially isolated stressful conditions exacerbated by the use of corticotrophin-releasing factor (CRF). In Experiment 1, i.c.v. injection of l-Asp attenuated behavioral stress responses (distress vocalization and active wakefulness) in a dose-dependent manner. Furthermore, l-Asp increased time spent standing/sitting motionless with eyes open and sitting motionless with head dropped (sleeping posture) in comparison with the group receiving CRF alone. In Experiment 2, i.c.v. injection of d-Asp dose-dependently decreased the number of distress vocalizations and the amount of time spent in active wakefulness. d-Asp increased the time spent standing/sitting motionless with eyes open compared with the group receiving CRF alone. In Experiment 3, we directly compared the effect of l-Asp with that of d-Asp. Both l- and d-Asp induced sedative effects under an acutely stressful condition. However, l-Asp, but not d-Asp, increased the time spent in a sleeping posture. These results indicate that both l- and d-Asp, when present in the brain, could induce a sedative effect, while the mechanism for hypnosis in neonatal chicks may be different for l-Asp in comparison with d-Asp.  相似文献   

14.
The effects of indole-3-butyric acid (IBA) alone and in combination with l-arginine on the morphogenic and biochemical responses in shoot tip explants of the cherry rootstock M × M 14 (Prunus avium × Prunus mahaleb) were examined. The maximum root number per rooted explant (16), root fresh (FW) and dry (DW) weights, as well as the rooting percentage (100 %) were recorded when 2 mg l?1 IBA (alone) were applied. Including the lowest IBA concentration (0.5 mg l?1) with the lowest and highest l-arginine concentrations (0.5 and 2 mg l?1, respectively) resulted in the greatest root length. The maximum leaf chlorophyll concentration and shoot length of the initial explant were recorded when 0.5 mg l?1 IBA plus 2 mg l?1 l-arginine were applied. In addition, l-arginine in combination with IBA (1 and 2 mg l?1) was found to suppress shoot FW and DW. On the other hand, l-arginine enhanced the promoting effect of IBA on both root length and leaf chlorophyll concentration. The carbohydrate and proline concentrations in leaves were not significantly altered with the application of IBA alone or in combination with l-arginine. On the other hand, the carbohydrate and proline concentrations in roots were decreased with the application of 1 and 2 mg l?1 IBA with l-arginine, resulting in the suppression of the promoting effects of IBA. It is clear from the findings that l-arginine has a direct effect on the in vitro rooting of M × M 14 explants, is involved in the function of the photosythetic apparatus, influences leaf chlorophyll content, participates in carbohydrate biosynthesis and metabolism, and is involved in proline accumulation both in leaves and roots.  相似文献   

15.
Fed-batch fermentation is the predominant method for industrial production of amino acids. In this study, we comprehensively investigated the effects of four kinds of feeding nutrients and developed an accurate optimization strategy for fed-batch production of l-threonine. The production of l-threonine was severely inhibited when cell growth ceased in the bath culture. Similarly, l-threonine production was also associated with cell growth in the carbon-, phosphate-, and sulfate-limited fed-batch cultures, but the accumulation of l-threonine was markedly increased because of the extended production time in the growth stage. Interestingly, auxotrophic amino acid (l-isoleucine)-limited feeding promoted l-threonine production over the non-growth phase. Metabolite analysis indicates that substantial production of acetate and glutamate and the resulting accumulation of ammonium may lead to the inhibition of l-threonine production. During the growth phase, the levels of l-isoleucine were accurately optimized by balancing cell growth and production with Pontryagin’s maximum principle, basing on the relationship between the specific growth rate μ and specific production rate ρ. Furthermore, the depletion of l-isoleucine and phosphate at the end of the growth phase favored the synthesis of l-threonine in the subsequent non-growth phase. Combining the two-stage feeding profiles, the final l-threonine concentration and conversion rate were increased by 5.9- and 2.1-fold, respectively, compared to batch processes without feeding control. The identification of efficient feeding nutrient and the development of accurate feeding strategies provide potential guidelines for microbial production of amino acids.  相似文献   

16.
l-dopa-l-Tyr was synthesized by Fmoc solid-phase peptide synthesis, purified by reversed-phase HPLC and characterized by using 1H, 13C NMR and ESI–MS analyses. The interaction of l-dopa-l-Tyr and l-dopa with ctDNA has been investigated respectively by UV–vis absorption and fluorescence spectroscopy. The results showed that both l-dopa and l-dopa-l-Tyr interacted with ctDNA through intercalative mode and l-dopa-l-Tyr showed a higher affinity for DNA. Meanwhile, compared with the free l-dopa, gel electrophoresis assay also demonstrated that l-dopa-l-Tyr interacted with DNA by intercalation.  相似文献   

17.
Cell extracts prepared from several oral treponemes isolated from the subgingival plaque of periodontitis patients showed high enzyme activity toward phenylazobenzyl-oxycarbonyl-l-prolyl-l-leucylglycyl-l-prolyl-d-arginine (a compound used as a substrate for microbial collagenases). One major enzyme hydrolyzing this substrate at the Leu-Gly bond only was partially purified from an unspeciated treponeme (strain US),Treponema denticola ATCC 35405, and 29 different clinical isolates ofT. denticola. TheTreponema US enzyme also hydrolyzed furylacryloyl-l-leucylglycyl-l-prolyl-l-alanine (another substrate of bacterial collagenases) at the Leu-Gly bond. This enzyme also hydrolyzed various collagens and collagen-derived peptides. These treponemal proteases were sensitive to metal chelators andp-chloromercury compounds. The results indicate that human oral treponemes contain enzymes that readily hydrolyze in chromogenic protease substrates the Leu-Gly bond only that is the cleavage site of these substrates also by “true” microbial collagenases.  相似文献   

18.
19.
The gene of an l-rhamnose isomerase (RhaA) from Bacillus subtilis was cloned to the pET28a(+) and then expressed in the E. coli ER2566. The expressed enzyme was purified with a specific activity of 3.58 U/mg by His-Trap affinity chromatography. The recombinant enzyme existed as a 194 kDa tetramer and the maximal activity was observed at pH 8.0 and 60°C. The RhaA displayed activity for l-rhamnose, l-lyxose, l-mannose, d-allose, d-gulose, d-ribose, and l-talose, among all aldopentoses and aldohexoses and it showed enzyme activity for l-form monosaccharides such as l-rhamnose, l-lyxose, l-mannose, and l-talose. The catalytic efficiency (k cat/K m) of the recombinant enzyme for l-rhamnose, l-lyxose, and l-mannose were 7,460, 1,013, and 258 M/sec. When l-xylulose 100 g/L and l-fructose 100 g/L were used as substrates, the optimum concentrations of RpiB were determined with 6 and 15 U/mL, respectively. The l-lyxose 40 g/L was produced from l-xylulose 100 g/L by the enzyme during 60 min, while l-mannose 25 g/L was produced from l-fructose 100 g/L for 80 min. The results suggest that RhaA from B. subtilis is a potential producer of l-form monosaccharides.  相似文献   

20.
Due to the unique role of l-proline in the folding and structure of protein, a variety of synthetic proline analogues have been developed. l-Proline analogues have been proven to be valuable reagents for studying cellular metabolism and the regulation of macromolecule synthesis in both prokaryotic and eukaryotic cells. In addition to these fundamental researches, they are useful compounds for industrial use. For instance, microorganisms that overproduce l-proline have been obtained by isolating mutants resistant to l-proline analogues. They are also promising candidates for tuning the biological, pharmaceutical, or physicochemical properties of naturally occurring or de novo designed peptides. Among l-proline analogues, l-azetidine-2-carboxylic acid (l-AZC) is a toxic non-proteinogenic amino acid originally found in lily of the valley plants and trans-4-hydroxy-l-proline (4-l-THOP) is the most abundant component of mammalian collagen. Many hydroxyprolines (HOPs), such as 4-l-THOP and cis-4-hydroxy-l-proline (4-l-CHOP), are useful chiral building blocks for the organic synthesis of pharmaceuticals. In addition, l-AZC and 4-l-CHOP, which are potent inhibitors of cell growth, have been tested for their antitumor activity in tissue culture and in vivo. In this review, we describe the recent discoveries regarding the physiological properties and microbial production and metabolism of l-proline analogues, particularly l-AZC and HOPs. Their applications in fundamental research and industrial use are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号