首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
植物在自然界中面临各种环境侵害时候,如干旱、盐、低温和病菌袭击,会启动自身的抵御机制来适应各种侵害。蔗糖非发酵相关的蛋白激酶(sucrose non-fermenting-1-related protein kinase,SnRK)是广泛存在于植物中的一类Ser/Thr蛋白激酶,参与各种胁迫信号传导通路,对植物抵御不良环境起到重要作用。植物中蔗糖非发酵相关的蛋白激酶共有38个成员,可以分为3个亚家族:SnRK1、SnRK2和SnRK3。本文主要讨论SnRK家族的研究进展,揭示SnRK家族在植物抗逆中的重要作用。  相似文献   

2.
蔗糖非发酵-1-相关蛋白激酶2(sucrose non-fermenting-1-related protein kinase 2,SnRK2)是一类植物特有的Ser/Thr蛋白激酶,其主要通过磷酸化底物来调节下游基因的表达,实现不同组织部位的抗逆调控,使植物适应不利环境.该蛋白激酶家族成员数量较少,分子量约为40 k...  相似文献   

3.
蔗糖非酵解型蛋白激酶2(SnRK2),广泛存在于多种植物,不同SnRK2的磷酸化机制可能涉及通过高渗性和ABA的激活,在植物抵抗逆境过程中起到重要生理功能。本综述主要结合SnRK2蛋白激酶家族的最新研究进展,综述其分子结构、活性调控、作用机制及其生理学功能等,着重介绍不受ABA诱导的SnRK2激酶在植物生长与应答逆境胁迫中的相关研究,ABA独立的SnRK2s作为植物对非生物胁迫响应的正调节器,参与体细胞胚胎发生的诱导,在拟南芥中表达增强了植物对干旱,寒冷和盐度耐受性。到目前为止,关于ABA独立的SnRK2家族成员的信息很少,还需对ABA独立的SnRK2家族进行深入研究,为系统探究植物逆境应答机制提供资料依据。  相似文献   

4.
脱落酸(abscisic acid, ABA)是植物用来抵抗外界威胁的一种重要激素,它通过影响其信号通路中下游调控因子的转录和转录后修饰,控制植物对生物和非生物环境胁迫作出响应,从而增强植物的抗性。其核心反应首先是脱落酸受体接受脱落酸分子信号后,变构抑制蛋白磷酸酶2C(protein phosphatase 2C, PP2C)的活性,从而减轻或消除PP2C对蔗糖非发酵相关蛋白激酶2(sucrose non-fermented related protein kinase 2, SnRK2)的抑制,增强SnRK2激酶对底物蛋白的磷酸化来调节植物脱落酸的总体反应。其次,当感知到外界威胁时植物通过激活编码脱落酸生物合成酶基因的表达,促进脱落酸的生物合成和积累,从而激活脱落酸信号通路中下游胚胎发育晚期丰富蛋白(late embryogenesis abundant proteins, LEA)的表达,增多的LEA蛋白可以保护细胞膜的稳定性从而增进植物的抗逆性。另外,脱落酸在触发保卫细胞气孔关闭方面也起关键作用,脱落酸可以调节细胞离子通量,介导气孔闭合,减少水分流失。  相似文献   

5.
SnRK2(SNF1-related protein kinase 2)家族在调控植物应答和抵御逆境方面发挥着重要作用。Open Stomata 1(OST1)/SnRK2.6是该家族的成员,具有典型的丝氨酸/苏氨酸蛋白激酶保守域,并主要在保卫细胞中表达。在逆境胁迫下,蛋白磷酸酶2C解除对OST1蛋白激酶的抑制,随后OST1蛋白激酶启动对下游信号组分的调控作用并引起气孔运动。本研究综述了OST1蛋白激酶的结构特征,主要概述OST1蛋白激酶与蛋白磷酸酶、转录因子和离子通道的调控关系,最后对相关的研究进行了展望。  相似文献   

6.
植物SnRKs家族在胁迫信号通路中的调节作用   总被引:2,自引:0,他引:2  
张金飞  李霞 《植物学报》2017,52(3):346-357
蔗糖非发酵1(SNF1)相关蛋白激酶家族(SnRKs)是植物胁迫响应过程中的一类关键蛋白激酶。在响应生物胁迫时,SnRKs可通过参与活性氧和水杨酸介导的信号转导途径,增强植物对生物侵害的耐受性。在响应非生物胁迫时,SnRKs通过脱落酸(ABA)介导的信号通路,增强植株对干旱、盐碱和高温等的耐受性;且通过独立于ABA的信号通路,SnRKs可调控胞内能量状态,维持离子平衡。该文总结了SnRKs蛋白激酶作为胁迫信号通路中的主要调节因子的最新研究进展,并展望了未来的研究方向。  相似文献   

7.
翻译控制肿瘤蛋白(Translationally controlled tumor protein, TCTP)广泛存在于真核细胞中,参与调节细胞分裂、植物生长发育,并介导植物抵御病原物侵染。蔗糖非酵解型蛋白激酶(SNF1-related protein kinase, SnRK1)在酵母、动物和植物中非常保守,并参与包括糖代谢和抵抗非生物和生物胁迫在内的一系列生理过程。本实验室前期工作证明TaTCTP响应叶锈菌侵染并参与诱发寄主产生防卫反应。为了深入探讨TaTCTP在叶锈菌侵染小麦诱发的防卫反应中发挥的作用,采用串联亲和纯化(TAP)与质谱(MS)联用技术,鉴定出SnRK1可能为TaTCTP潜在互作蛋白。文中对TCTP和SnRK1的相互作用进行了研究。酵母双杂交结果表明,同时携带TCTP和SnRK1的酵母可以在SD/-Leu/-Trp/-His/-Ade(SD/-LWHA,四缺)培养基上生长,说明TCTP与SnRK1在酵母双杂交系统中可以发生相互作用;通过双分子荧光互补实验,发现TCTP与SnRK1发生相互作用的荧光信号分布在细胞质中;进一步用Co-IP实验证明TCTP和SnRK1可以发生相互作用。本研究为深入研究TaTCTP在小麦与叶锈菌互作过程中的作用机制奠定了重要基础,对进一步完善小麦抵御叶锈菌侵染的分子机理具有重要意义。  相似文献   

8.
PYR/PYL/RCAR蛋白介导植物ABA的信号转导   总被引:1,自引:0,他引:1  
Hu S  Wang FZ  Liu ZN  Liu YP  Yu XL 《遗传》2012,34(5):560-572
脱落酸(ABA)在各个植物生长发育阶段以及植物对生物与非生物胁迫的响应过程中都发挥着重要的作用。最近研究表明,在ABA信号转导途径中有3种核心组份:ABA受体PYR/PYL/RCAR蛋白、负调控因子2C类蛋白磷酸酶(PP2C)和正调控因子SNF1相关的蛋白激酶2(SnRK2),它们共同组成了一个双重负调控系统——PYR/PYL/RCAR—|PP2C—|SnRK2来调控ABA信号转导及其下游反应,且3种核心组份在植物体内的结合方式受时空和生化等因素的影响,通过特定组合形成的ABA信号转导复合体介导特定的ABA信号反应。文章就PYR/PYL/RCAR蛋白介导的植物ABA信号识别与转导途径的分子基础及其调控机制,以及PYR/PYL/RCAR—PP2C—SnRK2参与的ABA信号调控网络等研究进展做一概述,并对该领域今后的研究进行了展望。  相似文献   

9.
胡帅  王芳展  刘振宁  刘亚培  余小林 《遗传》2012,34(5):560-572
脱落酸(ABA)在各个植物生长发育阶段以及植物对生物与非生物胁迫的响应过程中都发挥着重要的作用。最近研究表明, 在ABA信号转导途径中有3种核心组份:ABA受体PYR/PYL/RCAR蛋白、负调控因子2C类蛋白磷酸酶(PP2C)和正调控因子SNF1相关的蛋白激酶2(SnRK2), 它们共同组成了一个双重负调控系统-- PYR/PYL/RCAR-| PP2C-| SnRK2来调控ABA信号转导及其下游反应, 且3种核心组份在植物体内的结合方式受时空和生化等因素的影响, 通过特定组合形成的ABA信号转导复合体介导特定的ABA信号反应。文章就PYR/PYL/RCAR蛋白介导的植物ABA信号识别与转导途径的分子基础及其调控机制, 以及PYR/PYL/RCAR-PP2C-SnRK2参与的ABA信号调控网络等研究进展做一概述, 并对该领域今后的研究进行了展望。  相似文献   

10.
植物蛋白激酶与作物非生物胁迫抗性的研究   总被引:3,自引:0,他引:3  
干旱、盐碱、高温等非生物逆境胁迫严重影响作物生长发育、产量和品质。在遭受非生物逆境的威胁时,植物通过信号受体,可感知、转导胁迫信号,启动一系列抗逆相关基因的表达,最终缓解或抵御非生物逆境胁迫对植物造成的危害。其中,蛋白激酶和蛋白磷酸酯酶的磷酸化/去磷酸化作用在植物感受外界胁迫信号的分子传递过程中起到开关的作用。正常情况下,蛋白激酶磷酸化开启信号转导途径,启动相应的抗逆基因表达反应;当信号消失后,蛋白激酶去磷酸化将信号转导途径关闭,达到调控植物正常生长的目的。因此,蛋白激酶在调控感受胁迫信号、启动各种非生物逆境胁迫响应中起到了极其重要的作用。近年来,对植物蛋白激酶参与非生物胁迫响应的研究倍受关注。本文阐述了不同类型蛋白激酶在改良作物非生物胁迫抗性上的应用,为进一步研究提供资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号