首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO(2) assimilation is restricted. Mass spectrometry was used to measure O(2) uptake and evolution together with CO(2) uptake in leaves of French bean and maize at CO(2) concentrations saturating for photosynthesis and the CO(2) compensation point. In French bean at high CO(2) and low O(2) concentrations no significant water-water cycle activity was observed. At the CO(2) compensation point and 3% O(2) a low rate of water-water cycle activity was observed, which accounted for 30% of the linear electron flux from water. In maize leaves negligible water-water cycle activity was detected at the compensation point. During induction of photosynthesis in maize linear electron flux was considerably greater than CO(2) assimilation, but no significant water-water cycle activity was detected. Miscanthus × giganteus grown at chilling temperature also exhibited rates of linear electron transport considerably in excess of CO(2) assimilation; however, no significant water-water cycle activity was detected. Clearly the water-water cycle can operate in leaves under some conditions, but it does not act as a major sink for excess excitation energy when CO(2) assimilation is restricted.  相似文献   

2.
不同施氮量对杂交酸模叶片光合电子流分配的影响   总被引:4,自引:0,他引:4  
研究了不同施氮量对高蛋白含量植物杂交酸模(Rumex patientiaxR.tianschanicus)叶片中总光合电子流和分配在碳同化、光呼吸、Mehler反应以及氮代谢上的光合电子流的影响,并研究了不同施氮量对硝酸还原酶(NR)和谷氨酰胺合成酶(GS)的活性、叶片的蛋白质含量及叶绿素含量的影响。结果表明随着施氮量的增加,硝酸还原酶和谷氨酰胺合成酶的活性都显著提高,同时更多的光合电子流分配到氮代谢和光呼吸。氮代谢所需光合电子流约占总光合电子流的15%~21%。缺氮并没有造成光合电子流向Mehler反应分配的增加。  相似文献   

3.
An electron flow in addition to the major electron sinks in C(3) plants [both photosynthetic carbon reduction (PCR) and photorespiratory carbon oxidation (PCO) cycles] is termed an alternative electron flow (AEF) and functions in the chloroplasts of leaves. The water-water cycle (WWC; Mehler-ascorbate peroxidase pathway) and cyclic electron flow around PSI (CEF-PSI) have been studied as the main AEFs in chloroplasts and are proposed to play a physiologically important role in both the regulation of photosynthesis and the alleviation of photoinhibition. In the present review, I discuss the molecular mechanisms of both AEFs and their functions in vivo. To determine their physiological function, accurate measurement of the electron flux of AEFs in vivo are required. Methods to assay electron flux in CEF-PSI have been developed recently and their problematic points are discussed. The common physiological function of both the WWC and CEF-PSI is the supply of ATP to drive net CO(2) assimilation. The requirement for ATP depends on the activities of both PCR and PCO cycles, and changes in both WWC and CEF-PSI were compared with the data obtained in intact leaves. Furthermore, the fact that CEF-PSI cannot function independently has been demonstrated. I propose a model for the regulation of CEF-PSI by WWC, in which WWC is indispensable as an electron sink for the expression of CEF-PSI activity.  相似文献   

4.
It was previously shown with concurrent measurements of gas exchange and carbon isotope discrimination that the reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase by an antisense gene construct in transgenic Flaveria bidentis (a C4 species) leads to reduced CO2 assimilation rates, increased bundle-sheath CO2 concentration, and leakiness (defined as the ratio of CO2 leakage to the rate of C4 acid decarboxylation; S. von Caemmerer, A. Millegate, G.D. Farquhar, R.T. Furbank [1997] Plant Physiol 113: 469-477). Increased leakiness in the transformants should result in an increased ATP requirement per mole of CO2 fixed and a change in the ATP-to-NADPH demand. To investigate this, we compared measurements of the quantum yield of photosystem I and II ([phi]PSI and [phi]PSII) with the quantum yield of CO2 fixation ([phi]CO2) in control and transgenic F. bidentis plants in various conditions. Both [phi]PSI/[phi]CO2 and [phi]PSII/[phi]CO2 increased with a decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase content, confirming an increase in leakiness. In the wild type the ratio of [phi]PSI to [phi]PSII was constant at different irradiances but increased with irradiance in the transformants, suggesting that cyclic electron transport may be higher in the transformants. To evaluate the relative contribution of cyclic or linear electron transport to extra ATP generation, we developed a model that links leakiness, ATP/NADP requirements, and quantum yields. Despite some uncertainties in the light distribution between photosystem I and II, we conclude from the increase of [phi]PSII/[phi]CO2 in the transformants that cyclic electron transport is not solely responsible for ATP generation without NADPH production.  相似文献   

5.
The aim of this study was to examine the role of brassinosteroids (BRs) in protecting the photosynthetic apparatus from cold‐induced damage in cucumber (Cucumis sativus) plants. Recovery at both high light (HL) and low light (LL) after a cooling at 10/7°C induced irreversible inhibition of CO2 assimilation, photoinhibition at photosystem I (PSI) and inhibition of enzyme activities of Calvin cycle and ascorbate (AsA)‐reduced glutathione (GSH) cycle, followed by accumulation of H2O2 and malondialdehyde. However, cold‐induced photoinhibition at PSII was fully recovered at LL but not at HL. Meanwhile, recovery at HL increased electron flux to O2‐dependent alternative pathway [Ja(O2‐dependent)]. Foliar application of 24‐epibrassinolide (EBR) accelerated recovery from photoinhibition of PSII but not of PSI. EBR also significantly increased CO2 assimilation, activity of Calvin cycle enzymes and electron flux to carbon reduction [Je(PCR)], with a concomitant decrease in Ja(O2‐dependent); meanwhile EBR increased the activity of enzymes in AsA‐GSH cycle and cellular redox states. However, the positive effect of EBR on plant recovery was observed only at HL, but not LL. These results indicate that BR accelerates the recovery of photosynthetic apparatus at HL by activation of enzymes in Calvin cycle and increasing the antioxidant capacity, which in turn mitigate the photooxidative stress and the inhibition of plant growth during the recovery.  相似文献   

6.
We evaluated the H2O2-scavenging activity of the water-water cycle (WWC) in illuminated intact chloroplasts isolated from tobacco leaves. Illumination under conditions that limited photosynthesis [red light (>640 nm), 250 micromol photons m(-2) s(-1) in the absence of HCO3-] caused chloroplasts to take up O2 and accumulate H2O2. Concomitant with the O2 uptake, both ascorbate peroxidase (APX) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) lost their activities. However, superoxide dismutase (SOD), monodehydroascorbate radical reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities remained unaffected. The extent to which the photosynthetic linear electron flow decreased was small compared with the decline in APX activity. Therefore, the loss of APX activity lowered the electron flux through the WWC, as evidenced by a decrease in relative electron flux through PSII [Phi(PSII)xPFD]. To verify these interpretations, we created a transplastomic tobacco line in which an H2O2-insensitive APX from the red alga, Galdieria partita, was overproduced in the chloroplasts. In intact transplastomic chloroplasts which were illuminated under conditions that limited photosynthesis, neither O2 uptake nor H2O2 accumulation occurred. Furthermore, the electron flux through the WWC and the activity of GAPDH were maintained. The present work is the first report of APX inactivation by endogenous H2O2 in intact chloroplasts.  相似文献   

7.
Using thylakoid membranes, we previously demonstrated that accumulated electrons in the photosynthetic electron transport system induces the electron flow from the acceptor side of PSII to its donor side only in the presence of a pH gradient ((Delta)pH) across the thylakoid membranes. This electron flow has been referred to as cyclic electron flow within PSII (CEF-PSII) [Miyake and Yokota (2001) Plant Cell Physiol. 42: 508]. In the present study, we examined whether CEF-PSII operates in isolated intact chloroplasts from spinach leaves, by correlating the quantum yield of PSII [Phi(PSII)] with the activity of the linear electron flow [V(O(2))]. The addition of the protonophore nigericin to the intact chloroplasts decreased Phi(PSII), but increased V(O(2)), and relative electron flux in PSII [Phi(PSII) x PFD] and V(O(2)) were proportional to one another. Phi(PSII) x PFD at a given V(O(2)) was much higher in the presence of (Delta)pH than that in its absence. These effects of nigericin on the relationship between Phi(PSII) x PFD and V(O(2)) are consistent with those previously observed in thylakoid membranes, indicating the occurrence of CEF-PSII also in intact chloroplasts. In the presence of (Delta)pH, CEF-PSII accounted for the excess electron flux in PSII that could not be attributed to photosynthetic linear electron flow. The activity of CEF-PSII increased with increased light intensity and almost corresponded to that of the water-water cycle (WWC), implying that CEF-PSII can dissipate excess photon energy in cooperation with WWC to protect PSII from photoinhibition under limited photosynthesis conditions.  相似文献   

8.
Changes in chlorophyll fluorescence, P700(+)-absorbance and gas exchange during the induction phase and steady state of photosynthesis were simultaneously examined in rice (Oryza sativa L.), including the rbcS antisense plants. The quantum yield of photosystem II (PhiPSII) increased more rapidly than CO(2) assimilation in 20% O(2). This rapid increase in PhiPSII resulted from the electron flux through the water-water cycle (WWC) because of its dependency on O(2). The electron flux of WWC reached a maximum just after illumination, and rapidly generated non-photochemical quenching (NPQ). With increasing CO(2) assimilation, the electron flux of WWC and NPQ decreased. In 2% O(2), WWC scarcely operated and PhiPSI was always higher than PhiPSII. This suggested that cyclic electron flow around PSI resulted in the formation of NPQ, which remained at higher levels in 2% O(2). The electron flux of WWC in the rbcS antisense plants was lower, but these plants always showed a higher NPQ. This was also caused by the operation of the cyclic electron flow around PSI because of a higher ratio of PhiPSI/PhiPSII, irrespective of O(2) concentration. The results indicate that WWC functions as a starter of photosynthesis by generating DeltapH across thylakoid membranes for NPQ formation, supplying ATP for carbon assimilation. However, WWC does not act to maintain a high NPQ, and PhiPSII is down-regulated by DeltapH generated via the cyclic electron flow around PSI.  相似文献   

9.
In photosynthesis, the electrons released from PSII are considered to be shared mainly by carbon metabolism and the water-water cycle. We demonstrated previously that some electrons are utilized in a CO2- and O2-independent manner in leaves of wild watermelon [Miyake and Yokota (2000) Plant Cell Physiol: 41: 335]. In the present study, we examined the mechanism of this alternative flow of electrons in thylakoid membranes, isolated from fresh spinach leaves, by simultaneously measuring the quantum yield of PSII and the flux of the linear flow of electrons. In the presence of the protonophore nigericin, which eliminates the pH gradient across thylakoid membranes, the quantum yield and the flux of the linear flow of electrons were directly proportional to one another. The quantum yield at a given linear flux of electrons was much higher in the absence of nigericin than in its presence, indicating that an additional or alternative flow of electrons can occur independently of the linear flow in the absence of nigericin. In the presence of nigericin, the alternative flux of electrons increased with decreasing pH and with increasing reduction of the plastoquinone pool. Cyclic flow of electrons in PSII appears to be the most plausible candidate for the alternative flow of electrons. The flux reached 280 micromol x e(-) (mg Chl)(-1) x h(-1) and was similar to that of the CO2- and O2-independent alternative flow of electrons that we found in leaves of wild watermelon. The cyclic, alternative flow of electrons in PSII provides a possible explanation for the alternative flow of electrons observed in vivo.  相似文献   

10.
《BBA》2020,1861(9):148235
Photosynthetic electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may act as an alternative electron sink under fluctuating light in angiosperms. We measured the P700 redox kinetics and electrochromic shift signal under fluctuating light in 11 Camellia species and tobacco leaves. Upon dark-to-light transition, these Camellia species showed rapid re-oxidation of P700. However, this rapid re-oxidation of P700 was not observed when measured under anaerobic conditions, as was in experiment with tobacco performed under aerobic conditions. Therefore, photo-reduction of O2 mediated by water-water cycle was functional in these Camellia species but not in tobacco. Within the first 10 s after transition from low to high light, PSI was highly oxidized in these Camellia species but was over-reduced in tobacco leaves. Furthermore, such rapid oxidation of PSI in these Camellia species was independent of the formation of trans-thylakoid proton gradient (ΔpH). These results indicated that in addition to ΔpH-dependent photosynthetic control, the water-water cycle can protect PSI against photoinhibition under fluctuating light in these Camellia species. We here propose that the water-water cycle is an overlooked strategy for photosynthetic regulation under fluctuating light in angiosperms.  相似文献   

11.
Non-photochemical quenching (NPQ) of Chl fluorescence is a mechanism for dissipating excess photon energy and is dependent on the formation of a DeltapH across the thylakoid membranes. The role of cyclic electron flow around photosystem I (PSI) (CEF-PSI) in the formation of this DeltapH was elucidated by studying the relationships between O2-evolution rate [V(O2)], quantum yield of both PSII and PSI [Phi(PSII) and Phi(PSI)], and Chl fluorescence parameters measured simultaneously in intact leaves of tobacco plants in CO2-saturated air. Although increases in light intensity raised V(O2) and the relative electron fluxes through both PSII and PSI [Phi(PSII) x PFD and Phi(PSI) x PFD] only Phi(PSI) x PFD continued to increase after V(O2) and Phi(PSII) x PFD became light saturated. These results revealed the activity of an electron transport reaction in PSI not related to photosynthetic linear electron flow (LEF), namely CEF-PSI. NPQ of Chl fluorescence drastically increased after Phi(PSII) x PFD became light saturated and the values of NPQ correlated positively with the relative activity of CEF-PSI. At low temperatures, the light-saturation point of Phi(PSII) x PFD was lower than that of Phi(PSI) x PFD and NPQ was high. On the other hand, at high temperatures, the light-dependence curves of Phi(PSII) x PFD and Phi(PSI) x PFD corresponded completely and NPQ was not induced. These results indicate that limitation of LEF induced CEF-PSI, which, in turn, helped to dissipate excess photon energy by driving NPQ of Chl fluorescence.  相似文献   

12.
Oxygenic photosynthesis in cyanobacteria, algae, and plants requires photosystem II (PSII) to extract electrons from H(2)O and depends on photosystem I (PSI) to reduce NADP(+). Here we demonstrate that mixotrophically-grown mutants of the cyanobacterium Synechocystis sp. PCC 6803 that lack PSI (ΔPSI) are capable of net light-induced O(2) evolution in vivo. The net light-induced O(2) evolution requires glucose and can be sustained for more than 30min. Utilizing electron transport inhibitors and chlorophyll a fluorescence measurements, we show that in these mutants PSII is the source of the light-induced O(2) evolution, and that the plastoquinone pool is reduced by PSII and subsequently oxidized by an unidentified electron acceptor that does not involve the plastoquinol oxidase site of the cytochrome b(6)f complex. Moreover, both O(2) evolution and chlorophyll a fluorescence kinetics of the ΔPSI mutants are highly sensitive to KCN, indicating the involvement of a KCN-sensitive enzyme(s). Experiments using (14)C-labeled bicarbonate show that the ΔPSI mutants assimilate more CO(2) in the light compared to the dark. However, the rate of the light-minus-dark CO(2) assimilation accounts for just over half of the net light-induced O(2) evolution rate, indicating the involvement of unidentified terminal electron acceptors. Based on these results we suggest that O(2) evolution in ΔPSI cells can be sustained by an alternative electron transport pathway that results in CO(2) assimilation and that includes PSII, the platoquinone pool, and a KCN-sensitive enzyme.  相似文献   

13.
We hypothesized that cyclic electron flow around photosystem I (CEF-PSI) participates in the induction of non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence when the rate of photosynthetic linear electron flow (LEF) is electron-acceptor limited. To test this hypothesis, the relationships among photosynthesis rate, electron fluxes through both PSI and PSII [Je(PSI) and Je(PSII)] and Chl fluorescence parameters were analyzed simultaneously in intact leaves of tobacco plants at several light intensities and partial pressures of ambient CO2 (Ca). At low light intensities, decreasing Ca lowered the photosynthesis rate, but Je(PSI) and Je(PSII) remained constant. Je(PSI) was larger than Je(PSII), indicating the existence of CEF-PSI. Increasing the light intensity enhanced photosynthesis and both Je(PSI) and Je (PSII). Je(PSI)/Je(PSII) also increased at high light and at high light and low Ca combined, showing a strong, positive relationship with NPQ of Chl fluorescence. These results indicated that CEF-PSI contributed to the dissipation of photon energy in excess of that consumed by photosynthesis by driving NPQ of Chl fluorescence. The main physiological function of CEF-PSI in photosynthesis of higher plants is discussed.  相似文献   

14.
It is anticipated that enrichment of the atmosphere with CO(2) will increase photosynthetic carbon assimilation in C3 plants. Analysis of controlled environment studies conducted to date indicates that plant growth at concentrations of carbon dioxide ([CO(2)]) anticipated for 2050 ( approximately 550 micromol mol(-1)) will stimulate leaf photosynthetic carbon assimilation (A) by 20 to 40%. Simultaneously, concentrations of tropospheric ozone ([O(3)]) are expected to increase by 2050, and growth in controlled environments at elevated [O(3)] significantly reduces A. However, the simultaneous effects of both increases on a major crop under open-air conditions have never been tested. Over three consecutive growing seasons > 4700 individual measurements of A, photosynthetic electron transport (J(PSII)) and stomatal conductance (g(s)) were measured on Glycine max (L.) Merr. (soybean). Experimental treatments used free-air gas concentration enrichment (FACE) technology in a fully replicated, factorial complete block design. The mean A in the control plots was 14.5 micromol m(-2) s(-1). At elevated [CO(2)], mean A was 24% higher and the treatment effect was statistically significant on 80% of days. There was a strong positive correlation between daytime maximum temperatures and mean daily integrated A at elevated [CO(2)], which accounted for much of the variation in CO(2) effect among days. The effect of elevated [CO(2)] on photosynthesis also tended to be greater under water stress conditions. The elevated [O(3)] treatment had no statistically significant effect on mean A, g(s) or J(PSII) on newly expanded leaves. Combined elevation of [CO(2)] and [O(3)] resulted in a slightly smaller increase in average A than when [CO(2)] alone was elevated, and was significantly greater than the control on 67% of days. Thus, the change in atmospheric composition predicted for the middle of this century will, based on the results of a 3 year open-air field experiment, have smaller effects on photosynthesis, g(s) and whole chain electron transport through photosystem II than predicted by the substantial literature on relevant controlled environment studies on soybean and likely most other C3 plants.  相似文献   

15.
The extent to which PSII photoinactivation affects electron transport (PhiPSII) and CO2 assimilation remains controversial, in part because it frequently occurs alongside inactivation of other components of photosynthesis, such as PSI. By manipulating conditions (darkness versus low light) after a high light/low temperature treatment, we examined the influence of different levels of PSII inactivation at the same level of PSI inactivation on PhiPSII and CO2 assimilation for Arabidopsis. Furthermore, we compared PhiPSII at high light and optimum temperature for wild-type Arabidopsis and a mutant (npq4-1) with impaired capacities for energy dissipation. Levels of PSII inactivation typical of natural conditions (< 50%) were not associated with decreases in PhiPSII and CO2 assimilation at photon flux densities (PFDs) above 150 micromol m(-2) s(-1). At higher PFDs, the light energy being absorbed was in excess of the energy that could be utilized by downstream processes. Arabidopsis plants downregulate PSII activity to dissipate such excess in accordance with the level of PSII photoinactivation that also serves to dissipate absorbed energy. Therefore, the overall levels of non-photochemical dissipation and the efficiency of photochemistry were not affected by PSII inactivation at high PFD. Under low PFD conditions, such compensation is not necessary, because the amount of light energy absorbed is not in excess of that needed for photochemistry, and inactive PSII complexes are dissipating energy. We conclude that moderate photoinactivation of PSII complexes will only affect plant performance when periods of high PFD are followed by periods of low PFD.  相似文献   

16.
Furutani  Riu  Ohnishi  Miho  Mori  Yuki  Wada  Shinya  Miyake  Chikahiro 《Journal of plant research》2022,135(4):565-577

It is still a controversial issue how the electron transport reaction is carried out around photosystem I (PSI) in the photosynthetic electron transport chain. The measurable component in PSI is the oxidized P700, the reaction center chlorophyll in PSI, as the absorbance changes at 820–830 nm. Previously, the quantum yield at PSI [Y(I)] has been estimated as the existence probability of the photo-oxidizable P700 by applying the saturated-pulse illumination (SP; 10,000–20,000 µmol photons m?2 s?1). The electron transport rate (ETR) at PSI has been estimated from the Y(I) value, which was larger than the reaction rate at PSII, evaluated as the quantum yield of PSII, especially under stress-conditions such as CO2-limited and high light intensity conditions. Therefore, it has been considered that the extra electron flow at PSI was enhanced at the stress condition and played an important role in dealing with the excessive light energy. However, some pieces of evidence were reported that the excessive electron flow at PSI would be ignorable from other aspects. In the present research, we confirmed that the Y(I) value estimated by the SP method could be easily misestimated by the limitation of the electron donation to PSI. Moreover, we estimated the quantitative turnover rate of P700+ by the light-to-dark transition. However, the turnover rate of P700 was much slower than the ETR at PSII. It is still hard to quantitatively estimate the ETR at PSI by the current techniques.

  相似文献   

17.
The mechanisms of photoprotection of photosynthesis and dissipation of excitation energy in rice leaves in response to potassium (K) deficiency were investigated. Net photosynthetic rate and the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase decreased under K deficiency. Compared with the control, non-photochemical quenching of Chl fluorescence increased in K-deficient plant, whereas the efficiency of excitation transfer (F'(v)/F'(m)) and the photochemical quenching coefficient (q(P)) decreased. Thus, thermal dissipation of excitation energy increased as more excess electrons were accumulated in the photosynthetic chain. The electron transport rate through PSII (J(f)) was more sensitive to O2 concentration, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (J(g)/J(f)) was significantly decreased under K deficiency compared with the control. Furthermore, the alternative electron transport (J(a)/J(f)) was increased, indicating that a considerable amount of electrons had been transported to O2 during the water-water cycle in the K-deficient leaves. Although the fraction of electron transport to photorespiration (J(o)/J(f)) was also increased in the K-deficient leaves, it was less sensitive than that of the water-water cycle. With the generation of reactive oxygen species level, the activities of superoxide dismutase and ascorbate peroxidase, two of the key enzymes involved in scavenging of active oxygen species in the water-water cycle, also increased in K-deficient rice. Therefore, it is likely that a series of photoprotective mechanisms were initiated in rice plants in response to K deficiency and the water-water cycle might be critical for protecting photosynthetic apparatus under K deficiency in rice.  相似文献   

18.
The temperature response of the uncoupled whole-chain electron transport rate (ETR) in thylakoid membranes differs depending on the growth temperature. However, the steps that limit whole-chain ETR are still unclear and the question of whether the temperature dependence of whole-chain ETR reflects that of the photosynthetic rate remains unresolved. Here, we determined the whole-chain, PSI and PSII ETR in thylakoid membranes isolated from spinach leaves grown at 30 degrees C [high temperature (HT)] and 15 degrees C [low temperature (LT)]. We measured temperature dependencies of the light-saturated photosynthetic rate at 360 microl l(-1) CO2 (A360) in HT and LT leaves. Both of the temperature dependences of whole-chain ETR and of A360 were different depending on the growth temperature. Whole-chain ETR was less than the rates of PSI ETR and PSII ETR in the broad temperature range, indicating that the process was limited by diffusion processes between the PSI and PSII. However, at high temperatures, whole-chain ETR appeared to be limited by not only the diffusion processes but also PSII ETR. The C3 photosynthesis model was used to evaluate the limitations of A360 by whole-chain ETR (Pr) and ribulose bisphosphate carboxylation (Pc). In HT leaves, A360 was co-limited by Pc and Pr at low temperatures, whereas at high temperatures, A360 was limited by Pc. On the other hand, in LT leaves, A360 was solely limited by Pc over the entire temperature range. The optimum temperature for A360 was determined by Pc in both HT and LT leaves. Thus, this study showed that, at low temperatures, the limiting step of A360 was different depending on the growth temperature, but was limited by Pc at high temperatures regardless of the growth temperatures.  相似文献   

19.
The temperature dependence of quantum yields of electron transport from photosystem II (PSII) ([phi]II, determined from chlorophyll a fluorescence) and CO2 assimilation ([phi]CO2, apparent quantum yield for CO2 assimilation) were determined simultaneously in vivo. With C4 species representing NADP-malic enzyme, NAD-malic enzyme, and phosphoenolpyruvate carboxykinase subgroups, the ratio of [phi]II/[phi]CO2 was constant over the temperature range from 15 to 40[deg]C at high light intensity (1100 [mu]mol quanta m-2 s-1). A similar response was obtained at low light intensity (300 [mu]mol quanta m-2 s-1), except the ratio of [phi]II/[phi]CO2 increased at high temperature. When the true quantum yield for CO2 fixation ([phi]CO2*) was calculated by correcting for respiration in the light (estimated from temperature dependence of dark respiration), the ratio of [phi]II/[phi]C02* remained constant with varying temperature and under both light intensities in all C4 species examined. Because the [phi]II/[phi]CO2* ratio was the same in C4 monocots representing the three subgroups, the ratio was not affected by differences in the bio-chemical mechanism of concentrating CO2 in the bundle sheath cells. The results suggest that PSII activity is closely linked to the true rate of CO2 fixation in C4 plants. The close relationship between [phi]II and [phi]CO2* in C4 species under varying temperature and light intensity conditions is apparently due to a common low level of photorespiration and a primary requirement for reductive power in the C3 pathway. In contrast, in a C3 plant the [phi] II/[phi]CO2* ratio is higher under normal atmospheric conditions than under nonphotorespiratory conditions and it increases with rising temperature. This decrease in efficiency in utilizing energy derived from PSII for CO2 fixation is due to an increase in photorespiration. In both the C3 and C4 species, photochemistry is limited under low temperature, and thus excess energy must be dissipated by nonphotochemical means.  相似文献   

20.
Photoinactivation of photosystem II (PSII) and energy dissipation at low leaf temperatures were investigated in leaves of glasshouse-grown grapevine ( Vitis vinifera L. cv. Riesling). At low temperatures (< 15°C), photosynthetic rates of CO2 assimilation were reduced. However, despite a significant increase in the amount of light excessive to that required by photosynthesis, grapevine leaves maintained high intrinsic quantum efficiencies of PSII ( F v/ F m) and were highly resistant to photoinactivation compared to other species. Non-photochemical energy dissipation involving xanthophylls and fast D1 repair were the main protective processes reducing the 'gross' rate of photoinactivation and the 'net' rate of photoinactivation, respectively. We developed an improved method of energy dissipation analysis that revealed up to 75% of absorbed light is dissipated thermally via pH- and xanthophyll-mediated non-photochemical quenching at low temperatures (5–15°C) and moderate (800 µmol quanta m−2 s−1) light. Up to 20% of the energy flux contributing to electron transport was dissipated via photorespiration when taking into account temperature-dependent mesophyll conductance; however, this flux used in photorespiration was only a relatively small amount of the total absorbed light energy. Photoreduction of O2 at photosystem I (PSI) and subsequent superoxide detoxification (water-water cycle) was more sensitive to inhibition by low temperature than photorespiration. Therefore the water-water cycle represents a negligibly small energy sink below 15°C, irrespective of mesophyll conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号