首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
D Zakim  J Kavecansky  S Scarlata 《Biochemistry》1992,31(46):11589-11594
We have examined the idea that membrane enzymes are regulated by the viscosity of surrounding lipids using data compiled from the literature for the effect of the change in membrane viscosity ([symbol: see text]) at the gel- to liquid-crystal-phase transition on the activities of several enzymes. The analysis was not extended explicitly to the problem of viscosity-dependent regulation of membrane enzymes in liquid-crystalline lipids because of the absence of exact data for values of [symbol: see text] in liquid-crystalline phases of variable composition. For most membrane enzymes studied, energies of activation are discontinuous, while kcat is continuous, at the main-phase transition. We consider that the energy of activation contains terms related to the height of the chemical barrier to reaction and terms due to the mechanical properties of the bilayer, such as the work of expansion during the catalytic cycle and the temperature dependence of [symbol: see text]. We find that the differences in energies of activation, above and below the break points in Arrhenius plots, are orders of magnitude larger than can be accounted for by the above mechanical factors. Thus, discontinuities in energies of activation at the phase transition appear to reflect changes in the chemical barrier to reaction, which is independent of [symbol: see text]. The theorectical analysis indicates too that values of [symbol: see text] for bilayers in the liquid-crystalline phase would have to be several orders of magnitude larger than those for gel phases in order to provide a basis for viscosity-dependent regulation of membrane enzymes in liquid-crystalline phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
8.
9.
10.
Glycosylphosphatidylinositol (GPI)-anchored proteins have been identified in all eukaryotes. In fungi, structural and biosynthetic studies of GPIs have been restricted to the yeast Saccharomyces cerevisiae. In this article, four GPI-anchored proteins were purified from a membrane preparation of the human filamentous fungal pathogen Aspergillus fumigatus. Using new methodology applied to western blot protein bands, the GPI structures were characterized by ES-MS, fluorescence labeling, HPLC, and specific enzymatic digestions. The phosphatidylinositol moiety of the A. fumigatus GPI membrane anchors was shown to be an inositol-phosphoceramide containing mainly phytosphingosine and monohydroxylated C24:0 fatty acid. In constrast to yeast, only ceramide was found in the GPI anchor structures of A. fumigatus, even for Gel1p, a homolog of Gas1p in S. cerevisiae that contains diacylglycerol. The A. fumigatus GPI glycan moiety is mainly a linear pentomannose structure linked to a glucosamine residue: Manalpha1-3Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4GlcN.  相似文献   

11.
《The Journal of cell biology》1983,97(5):1421-1428
Immobilization of Paramecium followed the binding of antibodies to the major proteins of the ciliary membrane (the immobilization antigens, i- antigens, approximately 250,000 mol wt). Immunoelectron microscopy showed this binding to be serotype-specific and to occur over the entire cell surface. Antibody binding also reduced the current through the Ca-channel of the excitable ciliary membrane as monitored using a voltage-clamp. The residual Ca-current appeared normal in its voltage sensitivity and kinetics. As a secondary consequence of antibody binding, the Ca-induced K-current was also reduced. The resting membrane characteristics and other activatable currents, however, were not significantly altered by the antibody treatment. Since monovalent fragments of the antibodies also reduced the current but did not immobilize the cell, the electrophysiological effects were not the secondary consequences of immobilization. Antibodies against the second most abundant family of proteins (42,000-45,000 mol wt) had similar electrophysiological effects as revealed by experiments in which the Paramecia and the serum were heterologous with respect to the i-antigen but homologous with respect to the 42,000-45,000-mol-wt proteins. Protease treatment, shown to remove the surface antigen, also caused a reduction of the Ca-inward current. The loss of the inward Ca-current does not seem to be due to a drop in the driving force for Ca++ entry since increasing the external Ca++ or reducing the internal Ca++ (through EGTA injection) did not restore the current. Here we discuss the possibilities that (a) the major proteins define the functional environment of the Ca-channel and that (b) the Ca-channel is more susceptible to certain general changes in the membrane.  相似文献   

12.
13.
Comparisons between electrotronic potentials and certain predicted curves allow the identification of the membrane potential at which the sodium and potassium currents are switched on in frog sartorius. The activation potentials (the membrane potentials at which the ionic currents are great enough to be resolved by the method) are functions of the resting potential and time but not of ionic concentration. In the normal fiber, the activation potential for sodium lies nearer the resting potential and depolarizations set off sodium currents and action potentials. Below a resting potential of 55 to 60 mv. sodium activation is lost and conduction is impossible. A tenfold increase of calcium concentration lowers (moves further from the resting potential) the sodium activation potential by 20 to 25 mv. whereas the potassium activation potential is lowered by only 15 mv. Certain consequences of this are seen in the behavior of the muscle cell when it is stimulated with long duration shock.  相似文献   

14.
15.
16.
Philip F  Scarlata S 《Biochemistry》2004,43(37):11691-11700
We have quantified the enhancement of membrane binding of activated and deactivated Galpha(s) and Galpha(q) subunits, Gbetagamma subunits, and phospholipase Cbeta(2) by lipid rafts and by the presence of membrane-associated protein partners. Membrane binding studies show that lipid rafts do not affect the intrinsic membrane affinity of Galpha(q)(GDP) and Galpha(s)(GDP), supporting the idea that these proteins partition evenly between the domains. Visualization of lipid rafts on monolayers by use of a probe that does not enter raft domains shows that neither activated nor deactivated Galpha(q)(GDP) subunits distribute evenly between the raft and nonraft domains, contrary to previous suggestions. Membrane binding of deactivated Galpha(q) and Galpha(s)(GDP) became weaker when Gbetagamma subunits were present, in contrast with the behavior predicted by thermodynamics. However, activated Galpha subunits and phospholipase Cbeta(2) were recruited to membrane surfaces by protein partners by predicted amounts. Our studies suggest that the anomalous behavior seen for deactivated Galpha subunits in the presence of Gbetagamma subunits may be due to conformational changes in the N-terminus and/or occlusion of a portion of its membrane interaction region by Gbetagamma. Even though membrane recruitment was clearly observed for one protein partner, the presence of a second partner of lower affinity did not further promote membrane binding. For these proteins, the formation of larger protein complexes with very high membrane affinities is unlikely.  相似文献   

17.
X-ray diffraction from centrifugally oriented specimens of plant outer mitochondrial membranes suggests that these membranes contain prominent in-plane subunits. The short lamellar repeat which these specimens display (as low as 5.1 nm) points to a predominantly internal localization of the protein components of these membranes. The simplest model for the putative in-plane subunit consistent with autocorrelation analysis of the normal-incidence diffraction data consists of two concentric rings of electron density with diameters of (approx.) 2 and 4 nm. These rings could represent the planar projections of concentric cylindrical shells, aligned normal to the membrane surface.  相似文献   

18.
Voltage-dependent anion channels in the outer mitochondrial membrane are strongly regulated by electrical potential. In this work, one of the possible mechanisms of the outer membrane potential generation is proposed. We suggest that the inner membrane potential may be divided on two resistances in series, the resistance of the contact sites between the inner and outer membranes and the resistance of the voltage-dependent anion channels localized beyond the contacts in the outer membrane. The main principle of the proposed mechanism is illustrated by simplified electric and kinetic models. Computational behavior of the kinetic model shows a restriction of the steady-state metabolite flux through the mitochondrial membranes at relatively high concentration of the external ADP. The flux restriction was caused by a decrease of the voltage across the contact sites and by an increase in the outer membrane potential (up to +60 mV) leading to the closure of the voltage-dependent anion channels localized beyond the contact sites. This mechanism suggests that the outer membrane potential may arrest ATP release through the outer membrane beyond the contact sites, thus tightly coordinating mitochondrial metabolism and aerobic glycolysis in tumor and normal proliferating cells.  相似文献   

19.
Filipin, a polyene antibiotic, interacts with beta-hydroxy sterols such as cholesterol in most cell membranes, forming bumps and pits that are visible by electron microscopy of freeze-fracture replicas. The markedly reduced perturbability of the red blood cell (RBC) membrane, compared to other cells, has been attributed to the constraining influence of the red cell membrane skeleton, the undercoat composed of spectrin, actin, and protein 4.1. To test the influence of the membrane skeleton on filipin-induced perturbation of the RBC membrane, we studied the interaction of filipin with red cells that were inherently devoid of spectrin and RBC in which spectrin had been crosslinked or denatured. These spectrin-deficient, crosslinked, and denatured cells have a fivefold increase in the number of filipin-induced perturbations as compared to control cells, despite equivalent membrane cholesterol content. These findings confirm that the spectrin-based membrane skeleton strongly influences the organization of the membrane so as to limit perturbation by filipin:cholesterol interaction and that for membranes in which the cholesterol content is known, filipin is a useful probe for testing the avidity of spectrin-based cytoskeletal attachment.  相似文献   

20.
Specializations of the unit membrane   总被引:16,自引:0,他引:16  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号