首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ussing chamber technique was used to measure unidirectional Rb+ fluxes under short-circuit conditions across tissue sheets from proximal, central, and distal jejunum of rats. Whereas the proximal and central parts of the jejunum did not show any net transport of Rb+, there was a net secretion of around 0.2 μmol hr−1 cm−2 in the distal segment. This secretion could not be influenced significantly by mucosal application of K+ channel blockers such as Ba2+ (5 mm), tetraethylammonium (20 mm) or quinine (1 mm). Serosal ouabain (1 mm) blocked net secretion by increasing mucoserosal flux. Blockers of H+/K+ ATPases could not alter net fluxes of Rb+. Stimulation of Cl secretion by forskolin (10 μm) or of Na+ absorption by serine (10 mm) failed to influence the observed secretion of Rb+. Adrenaline (10 μm) also had no effect on Rb+ fluxes. Blocking Na+/H+ exchange by 5-(N-Ethyl-N-isopropyl)-amilorid (100 μm) blocked net secretion by increasing mucoserosal flux, as did the addition of Na+ acetate (30 mm) to the mucosal solution. We conclude that the distal jejunum of the rat secretes K+ under short-circuit conditions. This secretion does not seem to occur via K+ channels, but through a pH dependent mechanism. Received: 16 February 1999/Revised: 29 June 1999  相似文献   

2.
Cell pH regulation was investigated in the T84 cell line derived from epithelial colon cancer. Cell pH was measured by ratiometric fluorescence microscopy using the fluorescent probe BCECF. Basal pH was 7.17 ± 0.023 (n= 48) in HEPES Ringer. After acidification by an ammonium pulse, cell pH recovered toward normal at a rate of 0.13 ± 0.011 pH units/min in the presence of Na+, but in the absence of this ion or after treatment with 0.1 mm hexamethylene amiloride (HMA) no significant recovery was observed, indicating absence of Na+ independent H+ transport mechanisms in HEPES Ringer. In CO2/HCO 3 Ringer, basal cell pH was 7.21 ± 0.020 (n= 35). Changing to HEPES Ringer, a marked alkalinization was observed due to loss of CO2, followed by return to the initial pH at a rate of −0.14 ± 0.012 (n= 8) pH/min; this return was retarded or abolished in the absence of Cl or after addition of 0.2 mm DIDS, suggesting extrusion of bicarbonate by Cl/HCO 3 exchange. This exchange was not Na+ dependent. When Na+ was added to cells incubated in 0 Na+ Ringer while blocking Na+/H+ exchange by HMA, cell alkalinization by 0.19 ± 0.04 (n= 11) pH units was observed, suggesting the presence of Na+/HCO 3 cotransport carrying HCO 3 into these cells, which was abolished by DIDS. These experiments, thus, show that Na+/H+ and Cl/HCO 3 exchange and Na+/HCO 3 cotransport participate in cell pH regulation in T84 cells. Received: 3 April 2000/Revised: 22 June 2000  相似文献   

3.
Transport Pathways for Therapeutic Concentrations of Lithium in Rat Liver   总被引:1,自引:0,他引:1  
Although both amiloride- and phloretin-sensitive Na+/Li+ exchange activities have been reported in mammalian red blood cells, it is still unclear whether or not the two are mediated by the same pathway. Also, little is known about the relative contribution of these transport mechanisms to the entry of therapeutic concentrations of Li+ (0.2–2 mm) into cells other than erythrocytes. Here, we describe characteristics of these transport systems in rat isolated hepatocytes in suspension. Uptake of Li+ by hepatocytes, preloaded with Na+ and incubated in the presence of ouabain and bumetanide, comprised three components. (a) An amiloride-sensitive component, with apparent K m 1.2 mm Li+, V max 40 μmol · (kg dry wt · min)−1, showed increased activity at low intracellular pH. The relationship of this component to the concentration of intracellular H+ was curvilinear suggesting a modifier role of [H+] i . This system persisted in Na+-depleted cells, although with apparent K m 3.8 mm. (b) A phloretin-sensitive component, with K m 1.2 mm, V max 21 μmol · (kg · min)−1, was unaffected by pH but was inactive in Na+-depleted cells. Phloretin inhibited Li+ uptake and Na+ efflux in parallel. (c) A residual uptake increased linearly with the external Li+ concentration and represented an increasing proportion of the total uptake. The results strongly suggest that the amiloride-sensitive and the phloretin-sensitive Li+ uptake in rat liver are mediated by two separate pathways which can be distinguished by their sensitivity to inhibitors and intracellular [H+]. Received: 8 April 1999/Revised: 19 July 1999  相似文献   

4.
The chloride conductance of inner medullary collecting duct cells (mIMCD-3 cell line) has been investigated using the whole cell configuration of the patch clamp technique. Seventy-seven percent of cells were chloride selective when measured with a NaCl-rich bathing solution and a TEACl-rich pipette solution. Seventy-five percent of chloride-selective cells (90/144) had whole cell currents which exhibited an outwardly-rectifying (OR) current-voltage (I/V) relationship, while the remaining cells exhibited a linear (L) I/V relationship. The properties of the OR and L chloride currents were distinct. OR currents (mean current densities at ±60 mV of 66 ± 5 pA/pF and 44 ± 3 pA/pF), were time- and voltage-independent with an anion selectivity (from calculated permeability ratios) of SCN (2.3), NO 3 (1.8), ClO 4 (1.7), Br (1.7), I (1.6), Cl (1.0), HCO 3 (0.5), gluconate (0.2). Bath additions of NPPB, flufenamate, glibenclamide (all 100 μm) and DIDS (500 μm) produced varying degrees of block of OR currents with NPPB being the most potent (IC50 of approximately 50 μm) while DIDS was the least effective. Linear chloride currents had similar current densities to the OR chloride currents and were also time- and voltage-independent. The anion selectivity sequence was SCN (2.5), NO 3 (1.9), Br (1.4), I (1.1), Cl (1.0), ClO 4 (0.5), HCO 3 (0.5), gluconate (0.3). In contrast to the OR conductance, glibenclamide was the most potent and DIDS the least potent blocker of L currents. An IC50 of >100 μm was observed for NPPB block. Neither OR of L chloride currents were affected by acutely or chronically increased intracellular cAMP and were not affected when intracellular Ca2+ levels were increased or decreased. The molecular identity and physiological role of OR and linear currents in mIMCD-3 cells are discussed. Received: 13 June 1995/Revised: 15 September 1995  相似文献   

5.
Pre-epithelial ``unstirred' layers (abbr. pL) are generally regarded as undesirable diffusion barriers that impede access to absorptive cells of exogenous hexoses, amino acids or other experimental probes added to fluids bathing the mucosal surface. In the present paper it is suggested that the pL may have a functional role. Diffusion plus convection of saccharides and oligopeptides from lumen to brush border, combined with absorption to blood of their hydrolytic products, confers rectifying properties to the pL. The proposed model, based on experimental data from segmental jejunal perfusions in normal human subjects, indicates that the functional pathway for diffusion plus convection through the pL of hexoses and amino acids bound in the form of oligomers is only 10 ± 2 μm or little more than the anatomical thickness of the glycocalyx and mucus layers. In contrast, the pathlength from brush border to lumenal perfusion fluid for diffusion minus convection of monomers generated by membrane bound hydrolases is 50–150 μm. According to this model the pL offers little resistance to the passage of saccharides or oligopeptides from lumen to brush border but at the same time it provides a protective blanket that diminishes diffusional losses to lumenal chyme of hexoses and amino acids generated in the brush border. The model provides a theoretical explanation for the ``kinetic advantage' of transporting hexoses or amino acids through the pL in the form of oligomers and it predicts the proximal-distal concentrations of free glucose or fructose found experimentally in the outflows from jejunal segments perfused with sucrose or maltose. Received: 5 September 2000/Revised: 31 October 2000  相似文献   

6.
We characterized the signaling and ion transport pathways that mediate epidermal growth factor receptor physiological control in SV40-immortalized rabbit corneal epithelial cells (tRCEC). Our evaluation employed single-cell fluorescence imaging to measure the intracellular [Na+]i in these cells loaded with the Na+ sensitive dye, SBFI. EGF (1 to 5 ng/ml) transiently increased [Na+]i from 10 mm to as much as 35 mm after 25 min, which was followed by a decline towards its control value. These increases waned at higher EGF concentrations up to 50 ng/ml. Both inhibition of EGF receptor-linked tyrosine kinase activity (50 μm RG-13022) and cPLA2 activity (10 μm AACOCF3) obviated EGF-induced increases in [Na+]i. In contrast, PGE2 (10 μg/ml) and cAMP (2 mm) increased [Na+]i by 25 mm. Inhibition of NKCC activity through exposure to either Cl-free Ringers or 300 μm furosemide in NaCl Ringers eliminated EGF-induced increases in [Na+]i. Similarly, EGF failed to increase [Na+]i following inhibition of: 1) PKA activity (10 μm H-89); 2) Erk1/2 (15 μm PD98059) or 3) p38 (15 μm SB203580) activity. Stimulation protein kinase C activity (0.1 μm PMA) transiently increased [Na+]i followed by a decline towards its baseline value. EGF-induced increases in [Na+]i were unaltered by inhibition of K+ conductance (100 μm 4-AP). Taken together, EGF stimulates Erk1/2; p38 and cPLA2 activity. Their stimulation increases PGE2 and cAMP levels resulting in PKA and NKCC activation. Received: 18 December 2000/Revised: 24 May 2001  相似文献   

7.
An apical membrane ouabain-sensitive H-K exchange and a barium-sensitive basolateral membrane potassium channel are present in colonic crypt cells and may play a role in both K absorption and intracellular pH (pHi) regulation. To examine the possible interrelationship between apical membrane H-K exchange and basolateral membrane K movement in rat distal colon in the regulation of pHi, experiments were designed to assess whether changes in extracellular potassium can alter pHi. pHi in isolated rat crypts was determined using microspectrofluorimetric measurements of the pH-sensitive dye BCECF-AM (2′,7′-bis(carboxyethyl-5(6)-carboxy-fluorescein acetoxy methylester). After loading with the dye, crypts were superfused with a Na-free solution which resulted in a rapid and reversible fall in pHi (7.36 ± 0.02 to 6.98 ± 0.03). Following an increase in extracellular [K] to 20 mm, in the continued absence of Na, there was a further decrease in pHi (0.20 ± 0.02, P < 0.01). K-induced acidification was blocked both by 2 mm bath barium, a K channel blocker, and by 0.5 mm lumen ouabain. K-induced acidification was also observed when intracellular acidification was induced by a NH4Cl prepulse. These observations suggest that increased basolateral K movement increases intracellular [K] resulting in a decrease in pHi that is mediated by a ouabain-sensitive apical membrane H,K-ATPase. Our results demonstrate an interrelationship between basolateral K movement and apical H-K exchange in the regulation of pHi and apical K entry in rat distal colon. Received: 31 March 1998/Revised: 8 September 1998  相似文献   

8.
When rabbit isolated gastric glands were stimulated via the cyclic AMP pathway, a phosphorylated protein band of about 120 kDa (pp120) was markedly increased in the apical membrane-rich fraction, concomitant with an increase in the amount of H,K-ATPase and the phosphorylation of the cytoskeletal protein ezrin in the same fraction. The cytosolic fraction, but not other membrane fractions, also contained a protein with common features to the membrane-bound pp120, i.e., comigration in two-dimensional gels with a pI of ∼4.5, anomalous mobility in SDS-PAGE, reactivity to antibodies, and phosphorylation, indicating that these two proteins were identical. The possibility that pp120 is vinculin was completely excluded. Using antibody against pp120, this protein was found to be almost exclusively in the gastric parietal cell. Biochemical and immunohistochemical analyses suggest that pp120 exists mainly in the cytosol, and that a small part of the protein binds to the apical membrane when the parietal cell is stimulated via the cyclic AMP pathway. In the presence of histone, purified pp120 produced phosphorylation on pp120 as well as histone. The inhibitor profile of this kinase activity is not consistent with any known kinase. We conclude that pp120 is closely associated with a new type of kinase, and translocates from cytosol to the apical membrane when the parietal cell is stimulated. Received: 9 September 1998/Revised: 29 December 1998  相似文献   

9.
10.
This report presents a study of the effects of the membrane fluidizer, benzyl alcohol, on NHE isoforms 1 and 3. Using transfectants of an NHE-deficient fibroblast, we analyzed each isoform separately. An increase in membrane fluidity resulted in a decrease of ≈50% in the specific activities of both NHE1 and NHE3. Only V max was affected; K Na was unchanged. This effect was specific, as Na+, K+, ATPase activity was slightly stimulated. Inhibition of NHE1 and NHE3 was reversible and de novo protein synthesis was not required to restore NHE activity after washout of fluidizer. Inhibition kinetics of NHE1 by amiloride, 5-(N,N-dimethyl)amiloride (DMA), 5-(N-hexamethyl)amiloride (HMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were largely unchanged. Half-maximal inhibition of NHE3 was also reached at approximately the same concentrations of amiloride and analogues in control and benzyl alcohol treated, suggesting that the amiloride binding site was unaffected. Inhibition of vesicular transport by incubation at 4°C augmented the benzyl alcohol inhibition of NHE activity, suggesting that the fluidizer effect does not solely involve vesicle trafficking. In summary, our data demonstrate that the physical state of membrane lipids (fluidity) influences Na+/H+ exchange and may represent a physiological regulatory mechanism of NHE1 and NHE3 activity. Received: 23 January 1997/Revised: 1 August 1997  相似文献   

11.
Swelling-activated Cl currents (I Cl,swell ) have been characterized in a mouse renal inner medullary collecting duct cell line (mIMCD-K2). Currents activated by exposing the cells to hypotonicity exhibited characteristic outward rectification and time- and voltage-dependent inactivation at positive potentials and showed an anion selectivity of I > Br > Cl > Asp. NPPB (100 μm) inhibited the current in a voltage independent manner, as did exposure to 10 μm tamoxifen and 500 μm niflumic acid (NFA). In contrast, DIDS (100 μm) blocked the current with a characteristic voltage dependency. These characteristics of I Cl,swell in mIMCD-K2 cells are essentially identical to those of heterologously expressed cardiac CLC-3. A defining feature of CLC-3 is that activation of PKC by PDBu inhibits the conductance. In mIMCD-K2 cells preincubation with PDBu (100 nm) prevented the activation of I Cl,swell by hypotonicity. However, PDBu inhibition of I Cl,swell was reversed after PDBu withdrawal, but this was refractory to subsequent PDBu inhibition. Activation of either the cystic fibrosis transmembrane conductance regulator (CFTR) or Ca2+ activated Cl conductance (CaCC), which are coexpressed in mIMCD-K2 cells prior to PDBu treatment, abolished the PDBu inhibition of I Cl,swell . Control of I Cl,swell by PKC therefore depends on the physiological status of the cell. In intact mIMCD-K2 layers in Ussing chambers, forskolin stimulation of an inward short-circuit current (due to transepithelial Cl secretion via apical CFTR) was inhibited by cell swelling upon hypotonic exposure at the basolateral surface. Activation of I Cl,swell is therefore capable of regulating transepithelial Cl secretion and suggests that I Cl,swell is located at the basolateral membrane. PDBu exposure prior to or during hypotonic challenge was ineffective in reversing the swelling-activated inhibition of Cl secretion, but tamoxifen (100 μm) abolished the hypotonic inhibition of forskolin-stimulated short-circuit current (I sc ). RT-PCR analysis confirmed expression of mRNA for members of the CLC family, including both CLC-2 and 3, in the mIMCD-K2 cell line. Received: 24 February 2000/Revised: 26 May 2000  相似文献   

12.
The NHE-1 isoform of the Na+/H+ exchanger is excessively activated in cardiac cells during ischemia. Hence NHE-1 specific inhibitors are being developed since they could be of beneficial influence under conditions of cardiac ischemia and reperfusion. In this study, the Cytosensor™ microphysiometer was used to measure the potency of four new drug molecules, i.e., EMD 84021, EMD 94309, EMD 96785 and HOE 642 which are inhibitors of the isoform 1 of the Na+/H+ exchanger. The experiments were performed with Chinese hamster ovary cells (CHO K1) which are enriched in the NHE-1 isoform of the Na+/H+ antiporter. The Na+/H+ exchanger was stimulated with NaCl and the rate of extracellular acidification was quantified with the Cytosensor. The proton exchange rate was measured as a function of the NaCl concentration in the range of 10–138 mm NaCl stimulation. The proton exchange rate followed Michaelis-Menten kinetics with a K M = 30 ± 4 mm for Na+. Addition of either one of the four inhibitors decreased the acidification rate. The IC50 values of the four compounds could be determined as 23 ± 7 nm for EMD 84021, 5 ± 1 nm for EMD 94309, 9 ± 2 nm for EMD 96785 and 8 ± 2 nm for HOE 642 at 138 mm NaCl, in good agreement with more elaborate biological assays. The IC50 values increased with the NaCl concentration indicating competitive binding of the inhibitor. The microphysiometer approach is a fast and simple method to measure the activity of the Na+/H+ antiporter and allows a quantitative kinetic analysis of the proton excretion rate. Received: 3 September 1998/Revised: 20 November 1998  相似文献   

13.
Previous studies in our laboratory have shown that Na absorption across the porcine endometrium is stimulated by PGF and cAMP-dependent activation of a barium-sensitive K channel located in the basolateral membrane of surface epithelial cells. In this study, we identify and characterize this basolateral, barium-sensitive K conductance. Porcine uterine tissues were mounted in Ussing chambers and bathed with KMeSO4 Ringer solution. Amphotericin B (70 μm) was added to the luminal solution to permeabilize the apical membrane and determine the current-voltage relationship of the basolateral K conductance after activation by 100 μm CPT-cAMP. An inwardly rectifying current was identified which possessed a reversal potential of −53 mV when standard Ringer solution was used to bathe the serosal surface. The K:Na selectivity ratio was calculated to be 12:1. Administration of 5 mm barium to the serosal solution completely inhibited the current activated by cAMP under these conditions. In addition to these experiments, amphotericin-perforated whole cell patch clamp recordings were obtained from primary cultures of porcine surface endometrial cells. The isolated cells displayed an inwardly rectifying current under basal conditions. This current was significantly stimulated by CPT-cAMP and blocked by barium. These results together with our previous studies demonstrate that cAMP increases Na absorption in porcine endometrial epithelial cells by activating an inwardly rectifying K channel present in the basolateral membrane. Similar patch clamp experiments were conducted using cells from a human endometrial epithelial cell line, RL95-2. An inwardly rectifying current was also identified in these cells which possessed a reversal potential of −56 mV when the cells were bathed in standard Ringer solution. This current was blocked by barium as well as cesium. However, the current from the human cells did not appear to be activated by cAMP, indicating that distinct subtypes of inwardly rectifying K channels are present in endometrial epithelial cells from different species. Received: 6 February 1997/Revised: 10 July 1997  相似文献   

14.
The rat renal type II Na/Pi-cotransporter (NaPi2), which is regulated by mechanisms involving endocytosis and lysosomal degradation, contains two sequences that show high homology with two tyrosine (Y)-based consensus motifs previously reported to be involved in such intracellular trafficking: GY402FAM matching the consensus sequence GYXXZ, and Y509RWF matching the motif YXXO. Mutations of any of these two Y nearly abolished the NaPi2 mediated 32P i -uptake after cRNA-injection into oocytes. The mechanisms underlying these defects are however different. Mutation of the Y402 results in a lack of glycosylation and reduced surface expression of the cotransporter, that are specific for the Y402 mutation since substitution of the neighboring F403 did not have any effect. The inhibitory effect of the Y509 mutation is related to a functional inactivation of the protein expressed in the plasma membrane; mutation of the neighboring R510 also led to a decrease in the cotransporter activity. Pharmacological activation of the protein kinase C cascade by DOG induced the retrieval of both wild-type (WT) as well as Y509 cotransporters from the oocyte plasma membrane. These data suggest that the Y402 is important for the surface expression whereas Y509 for the function of the type II Na/P i -cotransporter expressed in oocytes. Y509 seems not to be involved in the membrane retrieval of the cotransporter. Received: 3 November 1998/Revised: 20 January 1999  相似文献   

15.
The idea that the pattern of point mutation in Drosophila has remained constant during the evolution of the genus has recently been challenged. A study of the nucleotide composition focused on the Drosophila saltans group has evidenced unsuspected nucleotide composition differences among lineages. Compositional differences are associated with an accelerated rate of amino acid replacement in functionally less constrained regions. Here we reassess this issue from a different perspective. Adopting a maximum-likelihood estimation approach, we focus on the different predictions that mutation and selection make about the nonsynonymous-to-synonymous rate ratio. We investigate two gene regions, alcohol dehydrogenase (Adh) and xanthine dehydrogenase (Xdh), using a balanced data set that comprises representatives from the melangaster, obscura, saltans, and willistoni groups. We also consider representatives of the Hawaiian picture-winged group. These Hawaiian species are known to have experienced repeated bottlenecks and are included as a reference for comparison. Our results confirm patterns previously detected. The branch ancestral to the fast-evolving willistoni/saltans lineage, where most of the change in GC content has occurred, exhibits an excess of synonymous substitutions. The shift in mutation bias has affected the extent of the rate variation among sites in Xdh. Received: 4 May 1999 / Accepted: 26 July 1999  相似文献   

16.
Experiments were performed to determine whether the transport properties of the ciliary epithelium vary over different regions. Rabbit iris-ciliary bodies were incubated under experimental or control conditions for 30 min before quick freezing, cryosectioning, dehydration and electron probe X-ray microanalysis. Cryosections were cut from three regions along the major axis of the iris-ciliary body, i.e., the anterior, middle and posterior (pars plicata) regions. In bicarbonate/CO2 solution, the epithelial cells of the anterior and middle regions contained more Cl and K than did those of the posterior region. These higher levels of Cl and K were reduced by the carbonic anhydrase inhibitor acetazolamide. Application of bumetanide, an inhibitor of the Na+-K+-2Cl cotransporter, resulted in significant increases in Cl and K in the anterior and middle regions but not in the posterior region. In bicarbonate-free solution, the ratio for K/Na contents was higher in the posterior than in the two more anterior regions; Na, K and Cl contents of epithelial cells in the three regions were otherwise similar. Cell composition did not differ significantly between the crests and valleys of the posterior region. The divergent responses to perturbation of epithelial transport in the different regions provide the first demonstration of functional heterogeneity along the major axis of the iris-ciliary body. The response to inhibition of carbonic anhydrase raises the possibility that the anterior aspect of the ciliary epithelium may be the major site of aqueous humor secretion. Received: 4 December 2000/Revised: 24 April 2001  相似文献   

17.
Exocytosis in protoplasts from Zea mays L. coleoptiles was studied using patch-clamp techniques. Fusion of individual vesicles with the plasma membrane was monitored as a step increase of the membrane capacitance (C m ). Vesicle fusion was observed as (i) An irreversible step increase in C m . (ii) Occasionally, irreversible C m steps were preceded by transient changes in C m , suggesting that the electrical connection between the vesicle with the plasma membrane opens and closes reversibly before full connection is achieved. (iii) Most frequently, however, stepwise transient changes in C m did not lead to an irreversible C m step. Within one patch of membrane capacitance steps due to transient and irreversible fusions were of similar amplitude. This suggests that the exocytosis events do not result from the fusion of vesicles with different sizes but are due to kinetically different states in a fusion process of the same vesicle type. The dwell time histogram of the transient fusion events peaked at about 100 msec. Fusion can be described with a circular three-state model for the fusion process of two fused states and one nonfused state. It predicts that energy input is required to drive the system into a prevailing direction. Received: 27 August 1999/Revised: 28 October 1999  相似文献   

18.
19.
The aim of this study was to clarify the mechanism of isotonic fluid transport in frog skin glands. Stationary ion secretion by the glands was studied by measuring unidirectional fluxes of 24Na+, 42K+, and carrier-free 134Cs+ in paired frog skins bathed on both sides with Ringer's solution, and with 10−5 m noradrenaline on the inside and 10−4 m amiloride on the outside. At transepithelial thermodynamic equilibrium conditions, the 134Cs+ flux ratio, J out Cs/J in Cs, varied in seven pairs of preparations from 6 to 36. Since carrier-free 134Cs+ entering the cells is irreversibly trapped in the cellular compartment (Ussing & Lind, 1996), the transepithelial net flux of 134Cs+ indicates that a paracellular flow of water is dragging 134Cs+ in the direction from the serosal- to outside solution. From the measured flux ratios it was calculated that the force driving the secretory flux of Cs+ varied from 30 to 61 mV among preparations. In the same experiments unidirectional Na+ fluxes were measured as well, and it was found that also Na+ was subjected to secretion. The ratio of unidirectional Na+ fluxes, however, was significantly smaller than would be predicted if the two ions were both flowing along the paracellular route dragged by the flow of water. This result indicates that Na+ and Cs+ do not take the same pathway through the glands. The flux ratio of unidirectional K+ fluxes indicated active secretion of K+. The time it takes for steady-state K+ fluxes to be established was significantly longer than that of the simultaneously measured Cs+ fluxes. These results allow the conclusion that — in addition to being transported between cells — K+ is submitted to active transport along a cellular pathway.Based on the recirculation theory, we propose a new model which accounts for stationary Na+, K+, Cl and water secretion under thermodynamic equilibrium conditions. The new features of the model, as compared to the classical Silva-model for the shark-rectal gland, are: (i) the sodium pumps in the activated gland transport Na+ into the lateral intercellular space only. (ii) A barrier at the level of the basement membrane prevents the major fraction of Na+ entering the lateral space from returning to the serosal bath. Thus, Na+ is secreted into the outside bath. It has to be assumed then that the Na+ permeability of the basement membrane barrier (P BM Na) is smaller than the Na+ permeability of the junctional membrane (P JM Na), i.e., P JM Na/P BM Na > 1. The secretory paracellular flow of water further requires that the Na+ reflection coefficients (σNa) of the two barriers are governed by the conditions, σBM Na > 0, and σBM Na > σJM Na. (iii) Na+ channels are located in the apical membrane of the activated gland cells, so that a fraction of the Na+ outflux appearing downstream the lateral intercellular space is recirculated by the gland cells. Based on measured unidirectional fluxes, a set of equations is developed from which we estimate the ion fluxes flowing through major pathways during stationary secretion. It is shown that 80% of the sodium ions flowing downstream the lateral intercellular space is recycled by the gland cells. Our calculations also indicate that under the conditions prevailing in the present experiments 1.8 ATP molecule would be hydrolyzed for every Na+ secreted to the outside bath. Received: 30 January 1996/Revised: 12 March 1996  相似文献   

20.
Epithelial cells from the anterior and equatorial surfaces of the frog lens were isolated and used the same day for studies of the Na/K ATPase. RNase protection assays showed that all cells express α1- and α2-isoforms of the Na/K pump but not the α3-isoform, however the α2-isoform dominates in anterior cells whereas the α1-isoform dominates in equatorial cells. The whole cell patch-clamp technique was used to record functional properties of the Na/K pump current (I P ), defined as the current specifically inhibited by dihydro-ouabain (DHO). DHO-I P blockade data indicate the α1-isoform has a dissociation constant of 100 μm DHO whereas for the α2-isoform it is 0.75 μm DHO. Both α1- and α2-isoforms are half maximally activated at an intracellular Na+-concentration of 9 mm. The α1-isoform is half maximally activated at an extracellular K+-concentration of 3.9 mm whereas for the α2-isoform, half maximal activation occurs at 0.4 mm. Lastly, transport by the α1-isoform is inhibited by a drop in extracellular pH, which does not affect transport by the α2-isoform. Under normal physiological conditions, I P in equatorial cells is approximately 0.23 μA/μF, and in anterior cells it is about 0.14 μA/μF. These current densities refer to the area of cell membrane assuming a capacitance of around 1 μF/cm2. Because cell size and geometry are different at the equatorial vs. anterior surface of the intact lens, we estimate Na/K pump current density per area of lens surface to be around 10 μA/cm2 at the equator vs. 0.5 μA/cm2 at the anterior pole. Received: 17 May 2000/Revised: 11 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号