首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
For the third time, techniques for the prediction of three-dimensional structures of proteins were critically assessed in a worldwide blind test. Steady progress is undeniable. How did this happen and what are the implications?  相似文献   

3.
Basharov MA 《Biofizika》2002,47(6):989-995
The possibility to derive the analogs of native proteins by the chemical synthesis is considered to be a serious argument for the concept of posttranslational protein folding. The present paper analyzes for the first time chemically synthesized proteins to reveal whether they are relevant to the problem of protein folding. The results enable the following conclusions to be drawn. The acquisition of the peculiar conformations by the chemically synthesized proteins to exhibit the specific functions is conditioned by the highly marked features of the secondary and tertiary structures of the corresponding native proteins. These features will make themselves evident only if favorable conditions are carefully chosen during the experiments for each individual protein. Thus, in our opinion, the possibility to derive a synthetic protein is hardly evidence for the posttranslational folding of proteins.  相似文献   

4.
Statistical analysis of protein folding rates has been done for 84 proteins with available experimental data. A surprising result is that the proteins with multi-state kinetics from the size range of 50–100 amino acid residues (a.a.) fold as fast as proteins with two-state kinetics from the same size range. At the same time, the proteins with two-state kinetics from the size range 101–151 a.a. fold faster than those from the size range 50–100 a.a. Moreover, it turns out unexpectedly that usually in the group of structural homologs from the size range 50–100 a.a., proteins with multi-state kinetics fold faster than those with two-state kinetics. The protein folding for six proteins with a ferredoxin-like fold and with a similar size has been modeled using Monte Carlo simulations and dynamic programming. Good correlation between experimental folding rates, some structural parameters, and the number of Monte Carlo steps has been obtained. It is shown that a protein with multi-state kinetics actually folds three times faster than its structural homologs.  相似文献   

5.
Simulations and experiments that monitor protein unfolding under denaturing conditions are commonly employed to study the mechanism by which a protein folds to its native state in a physiological environment. Due to the differences in conditions and the complexity of the reaction, unfolding is not necessarily the reverse of folding. To assess the relevance of temperature initiated unfolding studies to the folding problem, we compare the folding and unfolding of a 125-residue protein model by Monte Carlo dynamics at two temperatures; the lower one corresponds to the range used in T -jump experiments and the higher one to the range used in unfolding simulations of all-atom models. The trajectories that lead from the native state to the denatured state at these elevated temperatures are less diverse than those observed in the folding simulations. At the lower temperature, the system unfolds through a mandatory intermediate that corresponds to a local free energy minimum. At the higher temperature, no such intermediate is observed, but a similar pathway is followed. The structures contributing to the unfolding pathways resemble most closely those that make up the "fast track" of folding. The transition state for unfolding at the lower temperature (above Tm) is determined and is found to be more structured than the transition state for folding below the melting temperature. This shift towards the native state is consistent with the Hammond postulate. The implications for unfolding simulations of higher resolution models and for unfolding experiments of proteins are discussed.  相似文献   

6.
In the last couple of years, there has been increasing debate as to the presence and role of intermediate states on the folding pathways of several small proteins, including the 76-residue protein ubiquitin. Here, we present detailed kinetic studies to establish whether an intermediate state is ever populated during the folding of this protein. We show that the differences observed in previous studies are attributable to the transient aggregation of the protein during folding. Using a highly soluble construct of ubiquitin, which does not aggregate during folding, we establish the conditions in which an intermediate state is sufficiently stable to be observed by kinetic measurements.  相似文献   

7.
8.
9.
10.
The degree of unfolding of various forms of human and bovine α-lactalbumin was characterized by the chromatographically determined distribution coefficient. Molecular size increases as follows: native protein ≈ apo form < acid form ⪡ thermally unfolded form ≈ guanidine hydrochloride-unfolded protein.  相似文献   

11.
12.
The folding reactions of some small proteins show clear evidence of a hierarchic process, whereas others, lacking detectable intermediates, do not. Nevertheless, we argue that both classes fold hierarchically and that folding begins locally. If this is the case, then the secondary structure of a protein is determined largely by local sequence information. Experimental data and theoretical considerations support this argument. Part I of this article reviews the relationship between secondary structures in proteins and their counterparts in peptides.  相似文献   

13.
A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?   总被引:4,自引:0,他引:4  
Salmena L  Poliseno L  Tay Y  Kats L  Pandolfi PP 《Cell》2011,146(3):353-358
  相似文献   

14.
15.
Is there a unifying mechanism for protein folding?   总被引:1,自引:0,他引:1  
Proteins appear to fold by diverse pathways, but variations of a simple mechanism - nucleation-condensation - describe the overall features of folding of most domains. In general, secondary structure is inherently unstable and its stability is enhanced by tertiary interactions. Consequently, an extensive interplay of secondary and tertiary interactions determines the transition-state for folding, which is structurally similar to the native state, being formed in a general collapse (condensation) around a diffuse nucleus. As the propensity for stable secondary structure increases, folding becomes more hierarchical and eventually follows a framework mechanism where the transition state is assembled from pre-formed secondary structural elements.  相似文献   

16.
The protein folding problem: when will it be solved?   总被引:5,自引:0,他引:5  
The protein folding problem can be viewed as three different problems: defining the thermodynamic folding code; devising a good computational structure prediction algorithm; and answering Levinthal's question regarding the kinetic mechanism of how proteins can fold so quickly. Once regarded as a grand challenge, protein folding has seen much progress in recent years. Folding codes are now being used to successfully design proteins and non-biological foldable polymers; aided by the Critical Assessment of Techniques for Structure Prediction (CASP) competition, protein structure prediction has now become quite good. Even the once-challenging Levinthal puzzle now seems to have an answer--a protein can avoid searching irrelevant conformations and fold quickly by making local independent decisions first, followed by non-local global decisions later.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号