共查询到20条相似文献,搜索用时 8 毫秒
1.
Christian Schmidt Jeremie Fizet Francesca Properzi Mark Batchelor Malin K. Sandberg Julie A. Edgeworth Louise Afran Sammy Ho Anjna Badhan Steffi Klier Jacqueline M. Linehan Sebastian Brandner Laszlo L. P. Hosszu M. Howard Tattum Parmjit Jat Anthony R. Clarke Peter C. Kl?hn Jonathan D. F. Wadsworth Graham S. Jackson John Collinge 《Open biology》2015,5(12)
According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic'' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. 相似文献
2.
Erik J. Alred Michael Nguyen Maggie Martin Ulrich H. E. Hansmann 《Protein science : a publication of the Protein Society》2017,26(8):1524-1534
The rate‐limiting step in prion diseases is the initial transition of a prion protein from its native form into a mis‐folded state in which the protein not only forms cell‐toxic aggregates but also becomes infectious. Recent experiments implicate polyadenosine RNA as a possible agent for generating the initial seed. In order to understand the mechanism of RNA‐mediated mis‐folding and aggregation of prions, we dock polyadenosine RNA to mouse and human prion models. Changes in stability and secondary structure of the prions upon binding to polyadenosine RNA are evaluated by comparing molecular dynamics simulations of these complexes with that of the unbound prions. 相似文献
3.
Raimon Sabate 《朊病毒》2014,8(3):233-239
The conformational diseases, linked to protein aggregation into amyloid conformations, range from non-infectious neurodegenerative disorders, such as Alzheimer''s disease (AD), to highly infectious ones, such as human transmissible spongiform encephalopathies (TSEs). They are commonly known as prion diseases. However, since all amyloids could be considered prions (from those involved in cell-to-cell transmission to those responsible for real neuronal invasion), it is necessary to find an underlying cause of the different capacity to infect that each of the proteins prone to form amyloids has. As proposed here, both the intrinsic cytotoxicity and the number of nuclei of aggregation per cell could be key factors in this transmission capacity of each amyloid. 相似文献
4.
《朊病毒》2013,7(6):405-411
ABSTRACTWithin the mammalian prion field, the existence of recombinant prion protein (PrP) conformers with self-replicating (ie. autocatalytic) activity in vitro but little to no infectious activity in vivo challenges a key prediction of the protein-only hypothesis of prion replication – that autocatalytic PrP conformers should be infectious. To understand this dissociation of autocatalysis from infectivity, we recently performed a structural and functional comparison between a highly infectious and non-infectious pair of autocatalytic recombinant PrP conformers derived from the same initial prion strain.1 We identified restricted, C-terminal structural differences between these 2 conformers and provided evidence that these relatively subtle differences prevent the non-infectious conformer from templating the conversion of native PrPC substrates containing a glycosylphosphatidylinositol (GPI) anchor.1 In this article we discuss a model, consistent with these findings, in which recombinant PrP, lacking post-translational modifications and associated folding constraints, is capable of adopting a wide variety of autocatalytic conformations. Only a subset of these recombinant conformers can be adopted by post-translationally modified native PrPC, and this subset represents the recombinant conformers with high specific infectivity. We examine this model's implications for the generation of highly infectious recombinant prions and the protein-only hypothesis of prion replication. 相似文献
5.
Modern biology requires modern genetic concepts equally valid for all discovered mechanisms of inheritance, either “canonical” (mediated by DNA sequences) or epigenetic. Applying basic genetic terms such as “gene” and “allele” to protein hereditary factors is one of the necessary steps toward these concepts. The basic idea that different variants of the same prion protein can be considered as alleles has been previously proposed by Chernoff and Tuite. In this paper, the notion of prion allele is further developed. We propose the idea that any prion allele is a bimodular hereditary system that depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). Alteration of any of these 2 determinants may lead to establishment of a new prion allele. The bimodularity principle is valid not only for hereditary prions; it seems to be universal for any epigenetic hereditary factor. 相似文献
6.
Prion-like domains are low complexity, intrinsically disordered domains that compositionally resemble yeast prion domains. Many prion-like domains are involved in the formation of either functional or pathogenic protein aggregates. These aggregates range from highly dynamic liquid droplets to highly ordered detergent-insoluble amyloid-like aggregates. To better understand the amino acid sequence features that promote conversion to stable, detergent-insoluble aggregates, we used the prediction algorithm PAPA to identify predicted aggregation-prone prion-like domains with a range of compositions. While almost all of the predicted aggregation-prone domains formed foci when expressed in cells, the ability to form the detergent-insoluble aggregates was highly correlated with glutamine/asparagine (Q/N) content, suggesting that high Q/N content may specifically promote conversion to the amyloid state in vivo. We then used this data set to examine cross-seeding between prion-like proteins. The prion protein Sup35 requires the presence of a second prion, [PIN+], to efficiently form prions, but this requirement can be circumvented by the expression of various Q/N-rich protein fragments. Interestingly, almost all of the Q/N-rich domains that formed SDS-insoluble aggregates were able to promote prion formation by Sup35, highlighting the highly promiscuous nature of these interactions. 相似文献
7.
Timothy D. Kurt 《朊病毒》2016,10(1):83-91
Prions cause fatal neurodegenerative diseases in humans and animals and can be transmitted zoonotically. Chronic wasting disease (CWD) is a highly transmissible prion disease of wild deer and elk that affects cervids over extensive regions of the United States and Canada. The risk of cross-species CWD transmission has been experimentally evaluated in a wide array of mammals, including non-human primates and mouse models expressing human cellular prion protein. Here we review the determinants of cross-species CWD transmission, and propose a model that may explain a structural barrier for CWD transmission to humans. 相似文献
8.
《朊病毒》2013,7(1):81-88
A point mutation in Prnp that converts tyrosine (Y) at position 145 into a stop codon leading to a truncated prion molecule as found in an inherited transmissible spongiform encephalopathy (TSE), Gertsmann-Sträussler-Scheincker syndrome, suggests that the N-terminus of the molecule (spanning amino acids 23–144) likely plays a critical role in prion misfolding as well as in protein-protein interactions. We hypothesized that Y145Stop molecule represents an unstable part of the prion protein that is prone to spontaneous misfolding. Utilizing protein misfolding cyclic amplification (PMCA) we show that the recombinant polypeptide corresponding to the Y145Stop of sheep and deer PRNP can be in vitro converted to PK-resistant PrPSc in presence or absence of preexisting prions. In contrast, recombinant protein full-length PrPC did not show a propensity for spontaneous conformational conversion to protease resistant isoforms. Further, we show that seeded or spontaneously misfolded Y145Stop molecules can efficiently convert purified mammalian PrPC into protease resistant isoforms. These results establish that the N-terminus of PrPC molecule corresponding to residues 23–144 plays a role in seeding and misfolding of mammalian prions. 相似文献
9.
Amyloid formation by recombinant full-length prion proteins in phospholipid bicelle solutions 总被引:3,自引:0,他引:3
A soluble, oligomeric beta-sheet-rich conformational variant of recombinant full-length prion protein, PrP beta, was generated that aggregates into amyloid fibrils, PrP betaf. These fibrils have physico-chemical and structural properties closely similar to those of pathogenic PrP Sc in scrapie-associated fibrils and prion rods, including a closely similar proteinase K digestion pattern and Congo red birefringence. The conformational transition from PrP C to PrP beta occurs at pH 5.0 in bicellar solutions containing equimolar mixtures of dihexanoyl-phosphocholine and dimyristoyl-phospholipids, and a small percentage of negatively charged dimyristoyl-phosphoserine. The same protocol was applicable to human, cow, elk, pig, dog and mouse PrP. Comparison of full-length hPrP 23-230 with the N-terminally truncated human PrP fragments hPrP 90-230, hPrP 96-230, hPrP 105-230 and hPrP 121-230 showed that the flexible peptide segment 105-120 must be present for the generation of PrP beta. Dimerization of PrP C represents the rate-limiting step of the PrP C-to-PrP beta conformational transition, which is dependent on the amino acid sequence. The activation enthalpy of dimerization is about 130 kJ/mol for the recombinant full-length human and bovine prion proteins, and between 260 and 320 kJ/mol for the other species investigated. The in vitro conversion assay described here permits direct molecular characterization of processes that might be closely related to conformational transitions of the prion protein in transmissible spongiform encephalopathies. 相似文献
10.
Considerable advances in understanding the protein features favoring prion formation in yeast have facilitated the development of effective yeast prion prediction algorithms. Here we discuss a recent study in which we systematically explored the utility of the yeast prion prediction algorithm PAPA for designing mutations to modulate the aggregation activity of the human prion-like protein hnRNPA2B1. Mutations in hnRNPA2B1 cause multisystem proteinopathy in humans, and accelerate aggregation of the protein in vitro. Additionally, mutant hnRNPA2B1 forms cytoplasmic inclusions when expressed in Drosophila, and the mutant prion-like domain can substitute for a portion of a yeast prion domain in supporting prion activity in yeast. PAPA was quite successful at predicting the effects of PrLD mutations on prion activity in yeast and on in vitro aggregation propensity. Additionally, PAPA successfully predicted the effects of most, but not all, mutations in the PrLD of the hnRNPA2B1 protein when expressed in Drosophila. These results suggest that PAPA is quite effective at predicting the effects of mutations on intrinsic aggregation propensity, but that intracellular factors can influence aggregation and prion-like activity in vivo. A more complete understanding of these intracellular factors may inform the next generation of prion prediction algorithms. 相似文献
11.
Reed B. Wickner Herman K. Edskes B. Tibor Roberts Michael M. Pierce Ulrich Baxa Eric Ross 《Trends in biochemical sciences》2001,26(12):697-699
Prions are infectious proteins. [PIN+] is a non-chromosomal genetic element of Saccharomyces cerevisiae that is necessary for the de novo induction of the [PSI+] prion. Recently, [PIN+] has been found to be itself a prion of the Rnq1 protein. [URE3], another yeast prion, can also promote [PSI+] generation. Thus, one prion can promote the generation of another. 相似文献
12.
Diseases such as type 2 diabetes, Alzheimer's and Parkinson's are associated with the formation of amyloid. The transmissible spongiform encephalopathies, such as variant Creutzfeldt-Jakob disease, are believed to result from infectious forms of amyloid proteins termed prions. The ability of amyloid to initiate spontaneously and in the case of prions, to transfer successfully from one host to another, has been hard to fully rationalize. In this paper we use a mathematical model to explore the idea that it might be a combination of the presence of the prion/amyloid form and a change in the state of the host that allows the amyloid/prion to successfully initiate and propagate itself. We raise the intriguing possibility that potentially infectious amyloid may lie dormant in an apparently healthy individual awaiting a change in the state of the host or transmittal to a new more susceptible host. On this basis we make an analogy between prion/amyloid disease development and the two-hit model of cancer progression. We additionally raise the possibility that infectious amyloid strains may be characterized by a size distribution of length or radius. 相似文献
13.
《朊病毒》2013,7(3-4):157-161
ABSTRACTMicrobial prions facilitate a variety of phenotypic switches. Recently-developed tools that can directly interrogate, in the living cell, the aggregation state of a protein have enabled a wider range of experiments for prion-mediated behaviors. With such tools, the roles of the yeast prion [SWI+] in migration and mating were studied. Although [SWI+] cells were consistently less fit than their [swi?] counterparts under traditional laboratory conditions, in these new phenotypic paradigms [SWI+] cells demonstrated a distinct advantage. [SWI+] cells dispersed over a larger area under conditions resembling rainfall and outcrossed more frequently. We postulate that many behaviors in microorganisms may be modulated by stochastic prion switching. In diverse and changing natural environments, prion switching at low frequency may promote greater fitness of the population by specializing a small number of individuals with altered responses to their environments. 相似文献
14.
15.
16.
The structures of prion protein (PrP)–based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis. 相似文献
17.
《朊病毒》2013,7(4):266-277
ABSTRACTMammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. 相似文献
18.
Despite the significant efforts devoted to decipher the particular protein features that encode for a prion or prion-like behavior, they are still poorly understood. The well-characterized yeast prions constitute an ideal model system to address this question, because, in these proteins, the prion activity can be univocally assigned to a specific region of their sequence, known as the prion forming domain (PFD). These PFDs are intrinsically disordered, relatively long and, in many cases, of low complexity, being enriched in glutamine/asparagine residues. Computational analyses have identified a significant number of proteins having similar domains in the human proteome. The compositional bias of these regions plays an important role in the transition of the prions to the amyloid state. However, it is difficult to explain how composition alone can account for the formation of specific contacts that position correctly PFDs and provide the enthalpic force to compensate for the large entropic cost of immobilizing these domains in the initial assemblies. We have hypothesized that short, sequence-specific, amyloid cores embedded in PFDs can perform these functions and, accordingly, act as preferential nucleation centers in both spontaneous and seeded aggregation. We have shown that the implementation of this concept in a prediction algorithm allows to score the prion propensities of putative PFDs with high accuracy. Recently, we have provided experimental evidence for the existence of such amyloid cores in the PFDs of Sup35, Ure2, Swi1, and Mot3 yeast prions. The fibrils formed by these short stretches may recognize and promote the aggregation of the complete proteins inside cells, being thus a promising tool for targeted protein inactivation. 相似文献
19.
20.
Muhammad Khalid Salamat Carola Munoz-Montesino Mohammed Moudjou Human Rezaei Hubert Laude Vincent Béringue Michel Dron 《朊病毒》2013,7(2):131-135
Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of α-helix-rich PrPC into β sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region. 相似文献