首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential segmental distribution of electrophysiologically distinct myocytes helps to explain the variability of the pulmonary arteries to vasoactive agents. We have studied whether Ca2+-dependent CI(CICa) and K+(KCa) channels are activated differentially in enzymatically dispersed conduit and resistance myocytes. We measured cytosolic [Ca2+] and the changes of membrane current and potential elicited by spontaneous or agonist-induced Ca2+oscillations. Conduit arteries contained a heterogeneous cell population with a variable mixture of KCaand CICaconductances. Resistance arteries contained a more homogeneous cell population with predominance of CICachannel activation. The relation between KCaand CICaconductances in a given conduit myocyte determines the size of the Vmchange in response to a rise of cytosolic [Ca2+]. Conduit myocytes tend to hyperpolarize towards the K+equilibrium potential ( − 90 m V). In resistance myocytes, release of Ca2+from stores activates CICachannels and brings Vmto a value close to the chloride equilibrium potential ( − 20 or − 30 m V) thus favouring opening of Ca2+channels and Ca2+influx. In resistance vessels CICachannels contribute to link agonist-induced Ca2+release from stores and membrane depolarization, thus permitting protracted vasoconstriction.  相似文献   

2.
Myogenic, or pressure-induced, vasoconstriction is critical for local blood flow autoregulation. Underlying this vascular smooth muscle (VSM) response are events including membrane depolarization, Ca2+ entry and mobilization, and activation of contractile proteins. Large conductance, Ca2+-activated K+ channel (BKCa) has been implicated in several of these steps including, (1) channel closure causing membrane depolarization, and (2) channel opening causing hyperpolarization to oppose excessive pressure-induced vasoconstriction. As multiple mechanisms regulate BKCa activity (subunit composition, membrane potential (Em) and Ca2+ levels, post-translational modification) tissue level diversity is predicted. Importantly, heterogeneity in BKCa channel activity may contribute to tissue-specific differences in regulation of myogenic vasoconstriction, allowing local hemodynamics to be matched to metabolic requirements. Knowledge of such variability will be important to exploiting the BKCa channel as a therapeutic target and understanding systemic effects of its pharmacological manipulation.  相似文献   

3.
Large-conductance Ca2+-activated K+ (BKCa) channels play a critical role in regulating the cellular excitability in response to change in blood flow. It has been demonstrated that vascular BKCa channel currents in both humans and rats are increased after exercise training. This up-regulation of the BKCa channel activity in arterial myocytes may represent a cellular compensatory mechanism of limiting vascular reactivity to exercise training. However, the underlying mechanisms are not fully understood. In the present study, we examined the single channel activities and kinetics of the BKCa channels in rat thoracic aorta smooth muscle cells. We showed that exercise training significantly increased the open probability (Po), decreased the mean closed time and increased the mean open time, and the sensitivity to Ca2+ and voltage without altering the unitary conductance and the K+ selectivity. Our results suggest a novel mechanism by which exercise training increases the K+ currents by changing the BKCa channel activities and kinetics.  相似文献   

4.
In freshly dissociated uterine myocytes, the outward current is carried by K+ through channels highly selective for K+. Typically, nonpregnant myocytes have rather noisy K+ currents; half of them also have a fast-inactivating transient outward current (ITO). In contrast, the current records are not noisy in late pregnant myocytes, and ITO densities are low. The whole-cell IK of nonpregnant myocytes respond strongly to changes in [Ca2+]o or changes in [Ca2+]i caused by photolysis of caged Ca2+ compounds, nitr 5 or DM-nitrophene, but that of late-pregnant myocytes respond weakly or not at all. The Ca2+ insensitivity of the latter is present before any exposure to dissociating enzymes. By holding at −80, −40, or 0 mV and digital subtractions, the whole-cell IK of each type of myocyte can be separated into one noninactivating and two inactivating components with half-inactivation at approximately −61 and −22 mV. The noninactivating components, which consist mainly of iberiotoxin-susceptible large-conductance Ca2+-activated K+ currents, are half-activated at 39 mV in nonpregnant myocytes, but at 63 mV in late-pregnant myocytes. In detached membrane patches from the latter, identified 139 pS, Ca2+-sensitive K+ channels also have a half-open probability at 68 mV, and are less sensitive to Ca2+ than similar channels in taenia coli myocytes. Ca2+-activated K+ currents, susceptible to tetraethylammonium, charybdotoxin, and iberiotoxin contribute 30–35% of the total IK in nonpregnant myocytes, but <20% in late-pregnant myocytes. Dendrotoxin-susceptible, small-conductance delayed rectifier currents are not seen in nonpregnant myocytes, but contribute ∼20% of total IK in late-pregnant myocytes. Thus, in late-pregnancy, myometrial excitability is increased by changes in K+ currents that include a suppression of the ITO, a redistribution of IK expression from large-conductance Ca2+-activated channels to smaller-conductance delayed rectifier channels, a lowered Ca2+ sensitivity, and a positive shift of the activation of some large-conductance Ca2+-activated channels.  相似文献   

5.
The effect of high K concentration, insulin and the L-type Ca2– channel blocker PN 200-110 on cytosolic intracellular free calcium ([Ca2+]i) was studied in single ventricular myocytes of 10-day-old embryonic chick heart, 20-week-old human fetus and rabbit aorta (VSM) single cells using the Ca2+-sensitive fluorescent dye, Fura-2 microfluorometry and digital imaging technique. Depolarization of the cell membrane of both heart and VSM cells with continuous superfusion of 30 mM [K+]o induced a rapid transient increase of [Ca2+]i that was followed by a sustained component. The early transient increase of [Ca2+]i by high [+]o was blocked by the L-type calcium channel antagonist nifedipine. However, the sustained component was found to be insensitive to this drug. PN 200-110 another L-type Ca2+ blocker was found to decrease both the early transient and the sustained increase of [Ca2+]i induced by depolarization of the cell membrane with high [K+]o. Insulin at a concentration of 40 to 80 U/ml only produced a sustained increase of [Ca2+]i that was blocked by PN 200-110 or by lowering the extracellular Ca2+ concentration with EGTA. The sustained increase of [Ca2+], induced by high [K+]o or insulin was insensitive to metabolic inhibitors such as KCN and ouabain as well to the fast Na+ channel blocker, tetrodotoxin and to the increase of intracellular concentrations of cyclic nucleotides. Using the patch clamp technique, insulin did not affect the L-type Ca2+ current and the delayed outward K+ current. These results suggest that the early increase of (Ca2+]i during depolarization of the cell membrane of heart and VSM cells with high [K+]o is due to the opening and decay of an L-type Ca 2+ channel. However, the sustained increase of [Ca2+]i during a sustained depolarization is due to the activation of a resting (R) Ca 2+ channel that is insensitive to lowering [ATP]i and sensitive to insulin.  相似文献   

6.
Summary A barium-sensitive Ca-activated K+ channel in the luminal membrane of the tubule cells in thick ascending limb of Henle's loop is required for maintenance of the lumen positive transepithelial potential and may be important for regulation of NaCl reabsorption. In this paper we examine if the K+ channel can be solubilized and reconstituted into phospholipid vesicles with preservation of its native properties. The K+ channel in luminal plasma membrane vesicles can be quantitatively solubilized in CHAPS at a detergent/protein ratio of 3. For reconstitution, detergent is removed by passage over a column of Sephadex G 50 (coarse). K+-channel activity is assayed by measurement of86Rb+ uptake against a large opposing K+ gradient. The reconstituted K+ channel is activated by Ca2+ in the physiological range of concentration (K1/22×10–7 m at pH 7.2) as found for the K+ channel in native plasma membrane vesicles and shows the same sensitivity to inhibitors (Ba2+, trifluoperazine, calmidazolium, quinidine) and to protons. Reconstitution of the K+ channel into phospholipid vesicles with full preservation of its native properties is an essential step towards isolation and purification of the K+-channel protein.Titration with Ca2+ shows that most of the active K+ channels in reconstituted vesicles have their cytoplasmic aspect facing outward in contrast to the orientation in plasma membrane vesicles, which requires also addition of Ca2+ ionophore in order to observe Ca2+ stimulation. The reconstituted K+ channel is highly sensitive to tryptic digestion. Brief digestion leads to activation of the K+ channel in absence of Ca2+, to the level of activity seen with saturating concentrations of Ca2+. This tryptic split is located in a cytoplasmic aspect of the K+ channel that appears to be involved in opening and closing the K+ channel in response to Ca2+ binding.  相似文献   

7.
Binding of ouabain to Na+/K+-ATPase activated multiple signal transduction pathways including stimulation of Src, Ras, p42/44 MAPKs and production of reactive oxygen species (ROS) in rat cardiac myocytes. Inhibition of either Src or Ras ablated ouabain-induced increase in both [Ca2+]i and contractility. While PD98059 abolished the effects of ouabain on [Ca2+]i, it only caused a partial inhibition of ouabain-induced increases in contractility. On the other hand, pre-incubation of myocytes with N-acetyl cysteine (NAC) reduced the effects of ouabain on contractility, but not [Ca2+]i. Furthermore, 5-hydroxydecanoate (5-HD) blocked ouabain-induced ROS production and partially inhibited ouabain-induced increases in contractility in cardiac myocytes. Pre-incubation of myocytes with both 5-HD and PD98059 completely blocked ouabain's effect on contractility. Finally, we found that opening of mitochondrial KATP channel by diazoxide increased intracellular ROS and significantly raised contractility in cardiac myocytes. These new findings indicate that ouabain regulates cardiac contractility via both [Ca2+]i and ROS. While activation of MAPKs leads to increases in [Ca2+]i, opening of mitochondrial KATP channel relays the ouabain signal to increased ROS production in cardiac myocytes.  相似文献   

8.
9.
Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels expressed in multiple tissues, including smooth muscle. Although TRPV4 channels play a key role in regulating vascular tone, the mechanisms controlling Ca2+ influx through these channels in arterial myocytes are poorly understood. Here, we tested the hypothesis that in arterial myocytes the anchoring protein AKAP150 and protein kinase C (PKC) play a critical role in the regulation of TRPV4 channels during angiotensin II (AngII) signaling. Super-resolution imaging revealed that TRPV4 channels are gathered into puncta of variable sizes along the sarcolemma of arterial myocytes. Recordings of Ca2+ entry via single TRPV4 channels (“TRPV4 sparklets”) suggested that basal TRPV4 sparklet activity was low. However, Ca2+ entry during elementary TRPV4 sparklets was ∼100-fold greater than that during L-type CaV1.2 channel sparklets. Application of the TRPV4 channel agonist GSK1016790A or the vasoconstrictor AngII increased the activity of TRPV4 sparklets in specific regions of the cells. PKC and AKAP150 were required for AngII-induced increases in TRPV4 sparklet activity. AKAP150 and TRPV4 channel interactions were dynamic; activation of AngII signaling increased the proximity of AKAP150 and TRPV4 puncta in arterial myocytes. Furthermore, local stimulation of diacylglycerol and PKC signaling by laser activation of a light-sensitive Gq-coupled receptor (opto-α1AR) resulted in TRPV4-mediated Ca2+ influx. We propose that AKAP150, PKC, and TRPV4 channels form dynamic subcellular signaling domains that control Ca2+ influx into arterial myocytes.  相似文献   

10.
The charge translocation associated with sarcoplasmic reticulum (SR) Ca2+ efflux is compensated for by a simultaneous SR K+ influx. This influx is essential because, with no countercurrent, the SR membrane potential (Vm) would quickly (<1 ms) reach the Ca2+ equilibrium potential and SR Ca2+ release would cease. The SR K+ trimeric intracellular cation (TRIC) channel has been proposed to carry the essential countercurrent. However, the ryanodine receptor (RyR) itself also carries a substantial K+ countercurrent during release. To better define the physiological role of the SR K+ channel, we compared SR Ca2+ transport in saponin-permeabilized cardiomyocytes before and after limiting SR K+ channel function. Specifically, we reduced SR K+ channel conduction 35 and 88% by replacing cytosolic K+ for Na+ or Cs+ (respectively), changes that have little effect on RyR function. Calcium sparks, SR Ca2+ reloading, and caffeine-evoked Ca2+ release amplitude (and rate) were unaffected by these ionic changes. Our results show that countercurrent carried by SR K+ (TRIC) channels is not required to support SR Ca2+ release (or uptake). Because K+ enters the SR through RyRs during release, the SR K+ (TRIC) channel most likely is needed to restore trans-SR K+ balance after RyRs close, assuring SR Vm stays near 0 mV.  相似文献   

11.
Patch–clamping mitoplasts isolated from human colon carcinoma 116 cells has allowed the identification and characterization of the intermediate conductance Ca2+-activated K+-selective channel KCa3.1, previously studied only in the plasma membrane of various cell types. Its identity has been established by its biophysical and pharmacological properties. Its localisation in the inner membrane of mitochondria is indicated by Western blots of subcellular fractions, by recording of its activity in mitochondria made fluorescent by a mitochondria-targeted fluorescent protein and by the co-presence of channels considered to be markers of the inner membrane. Moderate increases of mitochondrial matrix [Ca2+] will cause mtKCa3.1 opening, thus linking inner membrane K+ permeability and transmembrane potential to Ca2+ signalling.  相似文献   

12.
The charge translocation associated with sarcoplasmic reticulum (SR) Ca2+ efflux is compensated for by a simultaneous SR K+ influx. This influx is essential because, with no countercurrent, the SR membrane potential (Vm) would quickly (<1 ms) reach the Ca2+ equilibrium potential and SR Ca2+ release would cease. The SR K+ trimeric intracellular cation (TRIC) channel has been proposed to carry the essential countercurrent. However, the ryanodine receptor (RyR) itself also carries a substantial K+ countercurrent during release. To better define the physiological role of the SR K+ channel, we compared SR Ca2+ transport in saponin-permeabilized cardiomyocytes before and after limiting SR K+ channel function. Specifically, we reduced SR K+ channel conduction 35 and 88% by replacing cytosolic K+ for Na+ or Cs+ (respectively), changes that have little effect on RyR function. Calcium sparks, SR Ca2+ reloading, and caffeine-evoked Ca2+ release amplitude (and rate) were unaffected by these ionic changes. Our results show that countercurrent carried by SR K+ (TRIC) channels is not required to support SR Ca2+ release (or uptake). Because K+ enters the SR through RyRs during release, the SR K+ (TRIC) channel most likely is needed to restore trans-SR K+ balance after RyRs close, assuring SR Vm stays near 0 mV.  相似文献   

13.
The Ca2+-activated, maxi-K (BK) K+ channel, with low Ca2+-binding affinity, is expressed in the distal tubule of the nephron and contributes to flow-dependent K+ secretion. In the present study we demonstrate that the Ca2+-activated, SK3 (KCa2.3) K+ channel, with high Ca2+-binding affinity, is also expressed in the mouse kidney (RT-PCR, immunoblots). Immunohistochemical evaluations using tubule specific markers demonstrate significant expression of SK3 in the distal tubule and the entire collecting duct system, including the connecting tubule (CNT) and cortical collecting duct (CCD). In CNT and CCD, main sites for K+ secretion, the highest levels of expression were along the apical (luminal) cell membranes, including for both principal cells (PCs) and intercalated cells (ICs), posturing the channel for Ca2+-dependent K+ secretion. Fluorescent assessment of cell membrane potential in native, split-opened CCD, demonstrated that selective activation of the Ca2+-permeable TRPV4 channel, thereby inducing Ca2+ influx and elevating intracellular Ca2+ levels, activated both the SK3 channel and the BK channel leading to hyperpolarization of the cell membrane. The hyperpolarization response was decreased to a similar extent by either inhibition of SK3 channel with the selective SK antagonist, apamin, or by inhibition of the BK channel with the selective antagonist, iberiotoxin (IbTX). Addition of both inhibitors produced a further depolarization, indicating cooperative effects of the two channels on Vm. It is concluded that SK3 is functionally expressed in the distal nephron and collecting ducts where induction of TRPV4-mediated Ca2+ influx, leading to elevated intracellular Ca2+ levels, activates this high Ca2+-affinity K+ channel. Further, with sites of expression localized to the apical cell membrane, especially in the CNT and CCD, SK3 is poised to be a key pathway for Ca2+-dependent regulation of membrane potential and K+ secretion.  相似文献   

14.
Based on recently determined ionic channel properties, a simple theoretical model for the burst activity of the pancreatic β-cell is formulated in this paper. The model contains an inward voltage-activated Ca2+ current which is inactivated by intracellular calcium ions and an outward K+ current that is activated by the membrane potential. The probability of opening of the channel gates is represented by Boltzmann equations. Our model is applicable in a regime where an ATP-blockable K+ channel is inhibited. In this regime, glucose is treated as an activator for the rate of efflux of intracellular Ca2+ ions, and hence its effect is equated tok Ca, the efflux rate constant. In addition, intracellular H+ ion, which is a byproduct of the glycolytic metabolic process, is treated as a competitive inhibitor for Ca2+ ion. Since H+ is a competitive inhibitor (according to our assumption), its effect is equated to the strength of the Cai dissociation constantK h. In the model, a Ca2+ binding site is assumed to exist in the inner membrane of the voltage-gated Ca2+ channel. The model predicts that a spike and burst electrical pattern can be generated by varyingk ca and that a given pattern may produce different levels of intracellular Ca2+ depending onK h. In other words, it predicts that levels of [Ca2+]i can be separated from the electrical activity by controlling the concentration of glucose and pH appropriately. This may account for the experimental observation of Lebrun et al. (1985) that insulin secretion is not correlated to the burst of electrical activity.  相似文献   

15.
The fluorescent dye chlorotetracycline was used to study the relationship between the light-induced decrease in cytosolic free calcium concentration, [Ca2+]c, and its effect on ion transport at the plasma membrane in the giant cells of Chara corallina Klein ex Willd. A kinetic analysis of the simultaneously measured light-induced changes in membrane potential and in [Ca2+]c led to the same time constant of about 40 s. The reversal potential of the light effect on membrane potential was in agreement with the dominant role of a K+ channel in the plasma membrane. Thus, the experiments reported here provide evidence for the following light-driven signal transduction chain from the chloroplasts to K+ transport of the plasma membrane: (i) light causes an uptake of Ca2+ into the chloroplasts, (ii) this causes a decrease in cytosolic [Ca2+]c, (iii) this leads to a decrease in the activity of a K+ channel. The results also initiated a re-analysis of previously published data of the light effect on the velocity of cytosolic streaming and supported the hypothesis that Ca2+ fluxes coming out of the chloroplasts upon darkening cause a Ca2+-induced phosphorylation of myosin, which slows down cytoplasmic streaming. Received: 3 May 1997 / Accepted: 19 May 1998  相似文献   

16.
Serotonin (5-hydroxytryptamine, 5-HT) is a potent pulmonary vasoconstrictor that promotes pulmonary artery smooth muscle cell (PASMC) proliferation. 5-HT-induced K+ channel inhibition increases [Ca2+]i in PASMCs, which is a major trigger for pulmonary vasoconstriction and development of pulmonary arterial hypertension (PAH). This study investigated whether KMUP-1 reduces pulmonary vasoconstriction in isolated pulmonary arteries (PAs) and attenuates 5-HT-inhibited K+ channel activities in PASMCs. In endothelium-denuded PA rings, KMUP-1 (1 μM) dose-dependently reduced 5-HT (100 μM) mediated contractile responses. Responses to KMUP-1 were reversed by K+ channel inhibitors (TEA, 10 mM, 4-aminopyridine, 5 mM, and paxilline, 10 μM). In primary PASMCs, KMUP-1 also dose-dependently restored 5-HT-inhibited voltage-gated K+-channel (Kv1.5 and Kv2.1) and large-conductance Ca2+-activated K+-channel (BKCa) proteins, as confirmed by immunofluorescent staining. Furthermore, 5-HT (10 μM)-inhibited Kv1.5 protein was unaffected by the PKA inhibitor KT5720 (1 μM) and the PKC activator PMA (1 μM), but these effects were reversed by KMUP-1 (1 μM), 8-Br-cAMP (100 μM), chelerythrine (1 μM), and KMUP-1 combined with a PKA/PKC activator or inhibitor. Notably, KMUP-1 reversed 5-HT-inhibited Kv1.5 protein and this response was significantly attenuated by co-incubation with the PKC activator PMA, suggesting that 5-HT-mediated PKC signaling can be modulated by KMUP-1. In conclusion, KMUP-1 ameliorates 5-HT-induced vasoconstriction and K+-channel inhibition through the PKC pathway, which could be valuable to prevent the development of PAH.  相似文献   

17.
Summary Intact adrenal chromaffin granules and purified granule membrane ghosts were allowed to fuse with acidic phospholipid planar bilayer membranes in the presence of Ca2+ (1 mm). From both preparations, we were able to detect a large conductance potassium channel (ca. 160 pS in symmetrical 400 mm K+), which was highly selective for K+ over Na+ (P k/P Na = 11) as estimated from the reversal potential of the channel current. Channel activity was unaffected by charybdotoxin, a blocker of the [Ca2+] activated K+ channel of large conductance. Furthermore, this channel proved quite different from the previously described channels from other types of secretory vesicle preparations, not only in its selectivity and conductance, but also in its insensitivity to both calcium and potential across the bilayer. We conclude that the chromaffin granule membrane contains a K+-selective channel with large conductance. We suggest that the role of this channel may include ion movement during granule assembly or recycling, and do not rule out events leading to exocytosis.  相似文献   

18.
The antibiotic Beauvericin (BEA) was previously shown to express ionophoric properties under simple experimental systems. Its channel-forming activity was examined in inside-out patches of ventricular myocytes and synthetic membranes with the patch clamp and fluorescence imaging techniques. Current transitions to several open state levels were evident after wash-in. The BEA channel is cation-selective. Conductance and kinetics are presented for K+ and Na+ substates and main states. The pore was blocked by La3+. In myocytes, the [K+]i was reduced, while [Na+]i and [Ca2+]i increased, leading to cytolysis. These results indicate that BEA forms cation-selective channels in lipid membranes, which can affect the ionic homeostasis.  相似文献   

19.
K+ channels, membrane voltage, and intracellular free Ca2+ are involved in regulating proliferation in a human melanoma cell line (SK MEL 28). Using patch-clamp techniques, we found an inwardly rectifying K+ channel and a calcium-activated K+ channel. The inwardly rectifying K+ channel was calcium independent, insensitive to charybdotoxin, and carried the major part of the whole-cell current. The K+ channel blockers quinidine, tetraethylammonium chloride and Ba2+ and elevated extracellular K+ caused a dose-dependent membrane depolarization. This depolarization was correlated to an inhibition of cell proliferation. Charybdotoxin affected neither membrane voltage nor proliferation. Basic fibroblast growth factor and fetal calf serum induced a transient peak in intracellular Ca2+ followed by a long-lasting Ca2+ influx. Depolarization by voltage clamp decreased and hyperpolarization increased intracellular Ca2+, illustrating a transmembrane flux of Ca2+ following its electrochemical gradient. We conclude that K+ channel blockers inhibit cell-cycle progression by membrane depolarization. This in turn reduces the driving force for the influx of Ca2+, a messenger in the mitogenic signal cascade of human melanoma cells. Received: 9 May 1995/Revised: 30 January 1996  相似文献   

20.
The electrical membrane properties of cultured human cytotrophoblast were examined by means of a standard electrophysiological technique. The mean values of the membrane potential (Em) and the membrane resistance in a physiological medium were around ?49 mV and 12 MΩ, respectively. The membrane potential was dependent, to a large extent, on the external Ca2+ concentration ([Ca2+]0). Deprivation of external Ca2+ reduced membrane potential to about ?20 mV, and an increase in [Ca2+]0 caused a hyperpolarization in a saturable manner. The Ca2+-dependency of membrane potential was affected remarkably by [K+]0, but not by [Na+]0 or [Cl?]0. The intracellular Ca2+ injection hyperpolarized the membrane in a Ca2+-free medium. A Ca2+ channel blocker, verapamil, completely abolished the Ca2+-dependent Em. The Ca2+-dependent Em was also suppressed by cooling or by the application of metabolic inhibitors. It is suggested that the Ca2+-dependent Em in cultured human cytotrophoblast is caused by a Ca2+ influx which, in turn, increases the K+ conductance of the cell membrane, presumably due to stimulation of Ca2+-activated K+ channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号