首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of hybrid inviability, sterility and 'speciation genes' in Drosophila have given insight into the genetic changes that result in reproductive isolation. Here, I survey some extraordinary and important advances in Drosophila speciation research. However, 'reproductive isolation' is not the same as 'speciation', and this Drosophila work has resulted in a lopsided view of speciation. In particular, Drosophila are not always well-suited to investigating ecological and other selection-driven primary causes of speciation in nature. Recent advances have made use of far less tractable, but more charismatic organisms, such as flowering plants, vertebrates and larger insects. Work with these organisms has complemented Drosophila studies of hybrid unfitness to provide a more complete understanding of speciation.  相似文献   

2.
Viruses are the most abundant life form and infect practically all organisms. Consequently, these obligate parasites are a major cause of human suffering and economic loss. The organization and origins of this enormous virosphere are profound open questions in biology. It has generally been considered that viruses infecting evolutionally widely separated organisms (e.g. bacteria and humans) are also distinct. However, recent research contradicts this picture. Structural analyses of virion architecture and coat protein topology have revealed unexpected similarities, not visible in sequence comparisons, suggesting a common origin for viruses that infect hosts residing in different domains of life (bacteria, archaea and eukarya).  相似文献   

3.
In recent years, cognitive neuroscientists have taken great advantage of functional magnetic resonance imaging (fMRI) as a non-invasive method of measuring neuronal activity in the human brain. But what exactly does fMRI tell us? We know that its signals arise from changes in local haemodynamics that, in turn, result from alterations in neuronal activity, but exactly how neuronal activity, haemodynamics and fMRI signals are related is unclear. It has been assumed that the fMRI signal is proportional to the local average neuronal activity, but many factors can influence the relationship between the two. A clearer understanding of how neuronal activity influences the fMRI signal is needed if we are correctly to interpret functional imaging data.  相似文献   

4.
Kyriacou CP 《Genetica》2002,116(2-3):197-203
The molecular analysis of specific mutant genes that affect the courtship behaviours of Drosophila melanogaster males and females is discussed in the light of the possibility that they may contribute to mate choice. There is clear evidence that some genes can act as a reservoir of species-specific behaviour, particularly for the male actions during courtship. However, to date there has not been a single genetic locus that has been isolated at the molecular level and shown to be associated with a change in female preference. There are some promising avenues of exploration, in that recent genetic analyses suggest that a small number of genes may make major contributions to female preferences. Finally a candidate gene approach is advocated in which orthologous genes from other species of Drosophila are used as natural mutations, and transformed into D. melanogaster hosts to investigate whether they carry species-specific mating information of the donor.  相似文献   

5.
There is widespread acceptance that fluctuating asymmetry (FA) increases under environmental and genetic stress. Fluctuating asymmetry in sexual traits is thought to be particularly sensitive to stress and to reflect genetic and phenotypic quality. Recent experimental studies show that the relationship between FA and stress is inconsistent, and there is little evidence that sexual traits are especially responsive to stress.  相似文献   

6.
Feeding is the set of behaviors whereby organisms acquire and process the energy required for survival and reproduction. Thus, feeding system morphology is presumably subject to selection to maintain or improve feeding performance. Relationships among feeding system morphology, feeding behavior, and diet not only explain the morphological diversity of extant primates, but can also be used to reconstruct feeding behavior and diet in fossil taxa. Dental morphology has long been known to reflect aspects of feeding behavior and diet but strong relationships of craniomandibular morphology to feeding behavior and diet have yet to be defined.  相似文献   

7.
What can Drosophila tell us about serpins,thrombosis and dementia?   总被引:2,自引:0,他引:2  
The validity of the fruit-fly as a model of human disease has been confirmed in a striking way by Green and colleagues.1 They show that the mutations causing a necrotic disease phenotype in Drosophila, precisely mirror those resulting in a group of well-studied but perplexing diseases in the human. These diseases, ranging from thrombosis to dementia, arise from mutations causing a conformational instability of serpin protease inhibitors. The findings provide clues as to the unusual severity and variable onset of such conformational diseases and demonstrate the potential of Drosophila as a model for their future study.  相似文献   

8.
The spectacular diversity of the Cape flora has promoted wide speculation on the evolutionary processes behind its origins, but until recently these ideas could not be tested rigorously due to the almost complete absence of a fossil record for the region. Now, molecular phylogenetic approaches, combined with analyses of ecological and biogeographical information, offer the potential to test key hypotheses about speciation of so-called Cape clades of flowering plants. We outline the main theories and how they might be tested by phylogenetic approaches. One conclusion is that population level studies of particular species complexes are now needed to complement the growing volume of phylogenetic information for Cape clades and to provide better understanding of mechanisms of population divergence in the Cape. Another is that comparisons between Cape and non-Cape clades are needed to confirm whether speciation is indeed faster in the Cape region. An alternative possibility, that extinction rates are lower, should also be considered in these comparisons. By virtue of the ongoing, coordinated efforts by a global team of botanists, the Cape is now uniquely placed for exploring the origins and assembly of a regional assemblage or biome.  相似文献   

9.
10.
11.
S Munro 《FEBS letters》2001,498(2-3):223-227
The N-glycans found on eukaryotic glycoproteins occur in a vast range of different structures. A universal N-glycan core is attached to proteins during synthesis in the endoplasmic reticulum, and then diversity is generated as the proteins pass through the Golgi apparatus. Many of the Golgi-localised glycosyltransferases have now been identified in both yeast and mammalian cells, but it is still unclear how these enzymes are integrated into the Golgi and the rest of the cell so as to ensure efficient and specific processing of passing substrates. This review discusses the potential of the yeast system to address these issues.  相似文献   

12.
13.
An rRNA phylogeny of 22 species of ciliates belonging to seven of Small and Lynn's eight classes has been obtained by distance and parsimony methods. It displays good congruence with classical systematics at low taxonomic levels and several major surprises at higher levels: (1) The species analyzed group into five major branches, four of which emerge almost simultaneously: hypotrichs, oligohymenophorans, lito-stomes, and nassophoreans corresponding to four of Small and Lynn's classes. The simultaneous emergence of these groups contradicts the long accepted view that litostomes (a group with “simple”, symmetrical, apical oral apparatus) are “primitive,” while hypotrichs are “highly evolved.” (2) Heterotrichs group with a karyorelictid, together forming the first emerging branch. While this supports the view that karyorelictids may be early-emerging ciliates, it completely explodes the traditional “spirotrichs” taxon, which united heterotrichs and hypotrichs. Instead, this reinforces the concept of Postciliodesmatophora and suggests that asymmetric oral apparatuses (i.e., with distinct paroral and adoral ciliatures) may be primitive in ciliates. The global topology of the tree therefore does not fit with the classical views of ciliate evolution, from “simple” oral apparatus and stomatogenesis to “complex” ones. Instead, a rather striking agreement with the strategy adopted to construct the cortical framework was disclosed. We noted that the cytoskeletal elements used to strengthen the cell surface could be subdivided into four main types: epiplasm, filaments, continuous microtu-bules, or basal body derived fibers. These four types fitted quite well with the major evolutionary lines disclosed by the molecular phylogeny. We therefore discuss unorthodox hypotheses assuming an early explosive radiation of ciliates into a small number of major lineages differing essentially in the solution adopted to subtend the cell surface and anchor the infraciliature. © 1992 Wiley-Liss, Inc.  相似文献   

14.
The nuclear envelope (NE) of the eukaryotic cell provides an essential barrier that separates the nuclear compartment from the cytoplasm. In addition, the NE is involved in essential functions such as nuclear stability, regulation of gene expression, centrosome separation and nuclear migration and positioning. In metazoa the NE breaks down and re-assembles around the segregated chromatids during each cell division. In this review we discuss the molecular constituents of the Caenorhabditis elegans NE and describe their role in post-mitotic NE re-formation, as well as the usefulness of C. elegans as an in vivo system for analyzing NE dynamics.  相似文献   

15.
A cladistic analysis of Orchidaceae was undertaken for 98 genera using 71 morphological apomorphies based on a reconsideration of previous character analyses and newly discovered variation. The equally weighted analysis found 60 000 most parsimonious trees with low consistency (CI = 0.29) but high retention (RI = 0.83). The strict consensus reveals a significant amount of structure, and most traditionally recognized subfamilies are supported as monophyletic, including the Apostasioideae, Cypripedioideae, Spiranthoideae, and Epidendroideae. Orchidoideae in the broad sense are paraphyletic, giving rise to spiranthoids. Vanilloids are sister to epidendroids, although exhibiting several states otherwise found only in clearly basal groups, such as Apostasioideae. The nonvandoid epidendroids are poorly resolved, due to a high degree of homoplasy. The vandoids appear to be monophyletic, contrary to recent molecular evidence, possibly due to repeated parallel development of the vandoid character suite. The importance of vegetative characters as evidence putatively independent from floral features is demonstrated in the placement of Tropidia. Implied weighting analysis of these data resulted in similar patterns at high levels, although the Orchidoideae and Spiranthoideae may each be monophyletic and the nonvandoid epidendroids are more resolved. The high degree of structure implied in previous orchid classifications must be reconsidered, given the poor resolution at lower levels in the present trees.  相似文献   

16.
Analysis of cultural traits, especially from linguistic data, is increasingly being used to interpret gene-frequency variation among human populations. Evolutionary processes are inferred using two major approaches, one based on reconstruction of demographic events in time, and the other based on location of factors of evolutionary relevance in space. This review discusses some assumptions underlying these approaches, and suggests that they may lead to different, although not incompatible, conclusions.  相似文献   

17.
Genetic data are often used to assess ‘population connectivity’ because it is difficult to measure dispersal directly at large spatial scales. Genetic connectivity, however, depends primarily on the absolute number of dispersers among populations, whereas demographic connectivity depends on the relative contributions to population growth rates of dispersal vs. local recruitment (i.e. survival and reproduction of residents). Although many questions are best answered with data on genetic connectivity, genetic data alone provide little information on demographic connectivity. The importance of demographic connectivity is clear when the elimination of immigration results in a shift from stable or positive population growth to negative population growth. Otherwise, the amount of dispersal required for demographic connectivity depends on the context (e.g. conservation or harvest management), and even high dispersal rates may not indicate demographic interdependence. Therefore, it is risky to infer the importance of demographic connectivity without information on local demographic rates and how those rates vary over time. Genetic methods can provide insight on demographic connectivity when combined with these local demographic rates, data on movement behaviour, or estimates of reproductive success of immigrants and residents. We also consider the strengths and limitations of genetic measures of connectivity and discuss three concepts of genetic connectivity that depend upon the evolutionary criteria of interest: inbreeding connectivity, drift connectivity, and adaptive connectivity. To conclude, we describe alternative approaches for assessing population connectivity, highlighting the value of combining genetic data with capture‐mark‐recapture methods or other direct measures of movement to elucidate the complex role of dispersal in natural populations.  相似文献   

18.
Fifty-five million years ago, a furry, hoofed mammal about the size of a dog ventured into the shallow brackish remnant of the Tethys Sea and set its descendants on a path that would lead to their complete abandonment of the land. These early ancestors of cetaceans (dolphins, porpoises, and whales) thereafter set on an evolutionary course that is arguably the most unusual of any mammal that ever lived. Primates and cetaceans, because of their adaptation to exclusively different physical environments, have had essentially nothing to do with each other throughout their evolution as distinct orders. In fact, the closest phylogenetic relatives of cetaceans are even-toed ungulates.  相似文献   

19.
It is often hoped that population genetics can answer questions about the demographic and geographic dynamics of recent biological invasions. Conversely, invasions with well-known histories are sometimes billed as opportunities to test methods of population genetic inference. In both cases, underappreciated limitations constrain the usefulness of genetic methods. The most significant is that human-caused invasions have occurred on historical timescales that are orders of magnitude smaller than the timescales of mutation and genetic drift for most multicellular organisms. Analyses based on the neutral theory of molecular evolution cannot resolve such rapid dynamics. Invasion histories cannot be reconstructed in the same way as biogeographic changes occurring over millenia. Analyses assuming equilibrium between mutation, drift, gene flow, and selection will rarely be applicable, and even methods designed for explicitly non-equilibrium questions often require longer timescales than the few generations of most invasions of current concern. We identified only a few population genetic questions that are tractable over such short timescales. These include comparison of alternative hypotheses for the geographic origin of an invasion, testing for bottlenecks, and hybridization between native and invasive species. When proposing population genetic analysis of a biological invasion, we recommend that biologists ask (i) whether the questions to be addressed will materially affect management practice or policy, and (ii) whether the proposed analyses can really be expected to address important population genetic questions. Despite our own enthusiasm for population genetic research, we conclude that genetic analysis of biological invasions is justified only under exceptional circumstances.  相似文献   

20.
 The importance of the hippocampus in spatial representation is well established. It is suggested that the rodent hippocampal network should provide an optimal substrate for the study of unsupervised Hebbian learning. We focus on the firing characteristics of hippocampal place cells in morphologically different environments. A hard-wired quantitative geometric model of individual place fields is reviewed and presented as the framework in which to understand the additional effects of synaptic plasticity. Existent models employing Hebbian learning are also reviewed. New information is presented regarding the dynamics of place field plasticity over short and long time scales in experiments using barriers and differently shaped walled environments. It is argued that aspects of the temporal dynamics of stability and plasticity in the hippocampal place cell representation both indicate modifications to, and inform the nature of, the synaptic plasticity in place cell models. Our results identify a potential neural basis for long-term incidental learning of environments and provide strong constraints for the way the unsupervised learning in cell assemblies envisaged by Hebb might occur within the hippocampus. Received: 8 March 2002 / Accepted: 13 June 2002 Acknowledgements. This work was supported by the Medical Research Council of the United Kingdom. Correspondence to: C. Lever or N. Burgess (e-mail: colin.lever@ucl.ac.uk; n.burgess@ucl.ac.uk, Tel.: +44-20-76793388 or 1147, Fax: +44-20-76791306 or 1145)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号