首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fc portion of immunoglobulin G (IgG) expresses paired oligosaccharides with microheterogeneities, which are associated with efficiencies of effector functions and with pathological states. A comparison of electrospray ionization mass spectrometry data obtained using a variety of Fc fragments derived from human and mouse IgG that do and do not retain the inter-chain disulfide bridge(s) revealed that (1) the Fc portion can be asymmetric as well as symmetric with respect to glycosylation and (2) the ratios of the individual glycoforms are different from what is expected from the random pairing.  相似文献   

2.
To explore the molecular basis for the ability of aggregated IgG to block the phagocytosis by human polymorphonuclear leukocytes of Con A-opsonized E and of nonopsonized Escherichia coli with mannose-binding adhesins, we examined specific aspects of the glycoprotein structure of both the 40- to 43-kDa receptor for the Fc portion of IgG (Fc gamma RII) and the 50- to 78-kDa receptor for the Fc portion of IgG (Fc gamma RIIIPMN) from human polymorphonuclear leukocytes. Fc gamma RIIIPMN isolated by both mAb and ligand affinity chromatography, but not Fc gamma RII, binds Con A in Western blots. This binding is specifically inhibitable by alpha-methylmannoside. Digestion of Fc gamma RIIIPMN by recombinant endoglycosidase H, which is specific for high mannose-type (Con A-binding) oligosaccharides, alters the epitope recognized by mAb 3G8 in or near the IgG ligand-binding site of the receptor. Similarly, the ability of Fc gamma RIIIPMN to bind human IgG ligand is sensitive to endoglycosidase H digestion. Our data indicate that ligands other than the classical IgG opsonins can bind to human Fc gamma RIIIPMN per se through lectin-carbohydrate interactions. Furthermore, Fc gamma RIIIPMN contains a high mannose type oligosaccharide chain which contributes importantly to the integrity of the classical IgG ligand-binding site. Thus, specific glycosylations of the receptor are important for both classical and nonclassical engagement of Fc gamma RIII and may play a role in determining the properties of the ligand-binding site.  相似文献   

3.
Properties of a second epitope of the murine Fc receptor for aggregated IgG   总被引:1,自引:0,他引:1  
The murine macrophage and lymphocyte Fc receptor for aggregated IgG (Fc gamma R) has previously been characterized by using the anti-Fc gamma R monoclonal antibody (mAb), 2.4G2. In the studies presented here, we describe a new mAb, 6B7C, that defines a second epitope of the Fc gamma R. The tissue distribution of the 6B7C epitope is coincident with the 2.4G2 epitope. However, only the 2.4G2 epitope is accessible to mAb binding on intact primary macrophages or lymphocytes. The 6B7C epitope is not detectable on primary macrophages or lymphocytes but is exposed on a portion of B lymphocyte Fc gamma R after activation by lipopolysaccharide and on some tumor cell lines. The expression of the 6B7C epitope on the surface of B lymphoblasts and tumor cell lines seems to correlate with their ability to release soluble Fc gamma R. The 6B7C mAb has the advantage that it reacts with native as well as denatured receptor and therefore can be used for techniques such as immunoblotting.  相似文献   

4.
Murine Fc gamma RII and Fc gamma RIII have highly homologous extracellular domains, but unrelated transmembrane and intracytoplasmic (IC) domains. Murine Fc gamma RIIb1 and b2 are two isoforms of single-chain receptors which differ only by 47 aa in their IC domain. Murine Fc gamma RIII are composed of an IgG-binding alpha-chain, the intracellular portion of which is unrelated to that of Fc gamma RII, and of a homodimeric gamma-chain which also associates with Fc epsilon RI. Murine mast cells express Fc gamma RII, Fc gamma RIII, and Fc epsilon RI. They can be induced to degranulate by murine IgG immune complexes or by F(ab')2 fragments of the rat anti-murine Fc gamma RII/III mAb 2.4G2, complexed to mouse anti-rat (MAR) F(ab')2. In order to determine which murine Fc gamma R can activate mast cells, cDNA encoding murine Fc gamma RIIb1, Fc gamma RIIb2 or Fc gamma RIII alpha were stably transfected into RBL-2H3 cells. Murine Fc gamma RIII but not Fc gamma RIIb1 or Fc gamma RIIb2 induced serotonin release when aggregated by (2.4G2-MAR) F(ab')2 complexes. The respective roles of the IC domains of murine Fc gamma RIII subunits in signal transduction were investigated by stably transfecting cDNA encoding IC-deleted or chimeric murine Fc gamma R into RBL-2H3 cells. The substitution of the IC domain of murine Fc gamma RII for that of murine Fc gamma RIII gamma, but not that of murine Fc gamma RIII alpha, conferred the ability to trigger serotonin release. The deletion of IC sequences of the alpha subunit did not alter the ability of murine Fc gamma RIII to trigger serotonin release. It follows that 1) murine Fc gamma RIII, but not Fc gamma RII, can induce RBL cells to release serotonin, 2) the aggregation of the IC domain of the murine Fc gamma RIII gamma subunit is sufficient, but 3) the IC domain of the murine Fc gamma RIII alpha subunit is neither sufficient nor necessary for triggering serotonin release.  相似文献   

5.
An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a –mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies.  相似文献   

6.
The formyl peptide receptor (FPR) and the glycosyl-phosphatidylinositol-linked type III receptor for the Fc portion of IgG (Fc gamma RIIIB; CD16) play important roles in various inflammatory responses in human neutrophils. The mechanisms of signaling by the glycosyl phosphatidylinositol-anchored Fc gamma RIIIB are not known. Therefore, we investigated the possibility that Fc gamma RIIIB and FPR may act in concert to mediate neutrophil functions. We observed that pretreatment of normal human neutrophils with Fab fragments of a mAb to the Fc gamma RIII (3G8) specifically inhibited their chemotaxis into micropore filters in response to the formylated peptides FMLP or formyl-norleucyl-leucyl-phenylalanine. Pretreatment of neutrophils with a saturating concentration of 3G8 Fab (100 nM or 5 micrograms/ml) followed by exposure to FMLP (0.5 to 500 nM) indicated that significant inhibition of chemotaxis was observed at peptide concentrations greater than 5 nM. However, 3G8 Fab had no effect on the neutrophil response to a wide range (0.05 to 500 nM) of other chemotactic factors, including C5a, leukotriene B4, IL-8 (neutrophil-activating peptide-1), and platelet-activating factor. Moreover, pretreatment of neutrophils with mAb to other cell surface molecules (decay-accelerating factor, Fc gamma RII, and HLA class I) did not affect chemotaxis to FMLP. Inhibition of movement was not due to degradation of FMLP by the cell surface endopeptidase 24.11 (CD10), because neutrophils pretreated with the CD10 inhibitor phosphoramidone and 3G8 Fab displayed the same altered response to FMLP as cells pretreated with 3G8 Fab alone. Ligation of the Fc binding site of Fc gamma RIIIB appears to be essential for altering the FMLP-induced response, since soluble aggregated IgG and other anti-Fc gamma RIII antibodies, all of which recognize the ligand binding site, mimic the inhibitory effect of the 3G8 Fab on FMLP-induced chemotaxis. In contrast, a mAb (214.1) that does not recognize the Fc binding site of Fc gamma RIIIB had no effect on FMLP-induced chemotaxis. Not only did anti-Fc gamma RIII inhibit neutrophil chemotaxis to FMLP in a filter-based migration assay, but 3G8 Fab also inhibited FMLP-induced neutrophil transendothelial migration. Scatchard plot analysis of radioligand binding experiments indicated that 3G8 Fab did not significantly alter the number of FMLP binding sites on neutrophils but significantly increased the affinity of the FPR for [3H]FMLP. Removal of greater than 80% of cell surface Fc gamma RIIIB by phospholipase C abolished the neutrophil chemotactic response to FMLP but did not affect movement toward C5a, IL-8, or leukotriene B4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
FcμR is a high-affinity receptor for the Fc portion of human IgM. It participates in B cell activation, cell survival and proliferation, but the full range of its functions remains to be elucidated. The receptor has an extracellular immunoglobulin (Ig)-like domain homologous to those in Fcα/μR and pIgR, but unlike these two other IgM receptors which also bind IgA, FcμR exhibits a binding specificity for only IgM-Fc. Previous studies have suggested that the IgM/FcμR interaction mainly involves the Cμ4 domains with possible contributions from either Cμ3 or Cμ2. To define the binding site more precisely, we generated three recombinant IgM-Fc proteins with specific mutations in the Cμ3 and Cμ4 domains, as well as a construct lacking the Cμ2 domains, and analyzed their interaction with the extracellular Ig-like domain of FcμR using surface plasmon resonance analysis. There is a binding site for FcμR in each IgM heavy chain. Neither the absence of the Cμ2 domains nor the quadruple mutant D340S/Q341G/D342S/T343S (in Cμ3 adjacent to Cμ2) affected FcμR binding, whereas double mutant K361D/D416R (in Cμ3 at the Cμ4 interface) substantially decreased binding, and a single mutation Q510R (in Cμ4) completely abolished FcμR binding. We conclude that glutamine at position 510 in Cμ4 is critical for IgM binding to FcμR. This will facilitate discrimination between the distinct effects of FcμR interactions with soluble IgM and with the IgM BCR.  相似文献   

8.
The binding of multivalent antigen-antibody complexes to receptors for the Fc portion of IgG (FcgammaR) induces the clustering of the FcgammaR and triggers cell activation leading to defence reactions against pathogens. The Fc portion of IgG consists of two identical polypeptide chains which are related to each other by a 2-fold axis and are folded in two structural domains, the C(H)2 domain, near the flexible hinge region of the IgG molecule, and the C(H)3 domain. We studied the interaction in solution between the Fc fragment of mouse IgG2b and the extracellular region of mouse FcgammaRII. We find that one Fc molecule binds one FcgammaRII molecule only. Using NMR spectroscopy, we show that FcgammaRII binds to a negatively charged area of the C(H)2 domain, corresponding to the lower hinge region, and that the binding of FcgammaRII onto one of the two symmetrically related sites on the Fc induces a conformational change in the other site. We therefore propose a model that explains why IgG molecules are unable to trigger FcgammaR-mediated cellular responses spontaneously in the absence of crosslinking by multivalent antigens.  相似文献   

9.
The specific binding of IgG2a or IgG2b subclass monoclonal anti-sheep erythrocyte antibodies to P388D1 cell surface Fc gamma 2aR3 or Fc gamma 2bR, respectively, triggered the synthesis of adenosine-3'5'-monophosphate (cAMP) to an approximately same extent by the mechanisms that are apparently unique for each type of Fc gamma Rs. Fc gamma 2aR appeared to trigger directly, upon binding of IgG2a antibodies, the adenylate cyclase system without requiring the participation of guanine nucleotide-binding (G/F) regulatory protein, because the Fc gamma 2aR-triggered cAMP synthesis, which reached maximum within 30 min, was not significantly affected by an uncoupler, Mn++ or by addition of guanosine triphosphate (GTP) analog, 5'-guanylylimidodiphosphate (Gpp(NH)p). In contrast, Fc gamma 2bR appeared to stimulate indirectly the G/F regulatory requiring-adenylate cyclase system by generating prostaglandins, since the cAMP synthesis, which required 90 min to reach plateau after binding of IgG2b to Fc gamma 2bR, was totally suppressed by phospholipase A2 inhibitor (p-bromophenacylbromide) or cyclo-oxygenase inhibitor (indomethacin), partially suppressed by Mn++, and slightly increased by Gpp(NH)p. Furthermore, the inhibition of phagocytic process by cytochalasin D increased cAMP synthesis mediated by Fc gamma 2aR (about 70% at 2 micrograms/ml), but did not affect Fc gamma 2bR-mediated cAMP synthesis. In addition, our data suggested that both Fc gamma 2aR- and Fc gamma 2bR-mediated cAMP synthesis are independent from beta-adrenergic receptor-mediated stimulation of the adenylate cyclase system, since either beta-agonist (isoproterenol) or beta-antagonist (propranolol) did not affect significantly the levels of cAMP produced in response to EA-stimulation.  相似文献   

10.
生物药(bio-therapeutics)是指采用生物技术制备的、临床上用于疾病治疗的大分子生物制品,具有结构复杂、异质性高等特点,科学严谨的生物药通用名命名,是区分生物药物质基础的主要依据,也是药品生命周期管理的重要基础。世界卫生组织(World Health Organization,WHO)协调建立的国际非专利名称(International Nonproprietary Names,INN)是全球药物命名的标准化体系。从INN的起源,以及生物药INN的类别、发生与发展为主线,以较为详实的数据统计和分析,呈现了全球生物药的衍化进程,从不同的角度纵览生物药技术发展历程,对生物药的研发设计、技术标准及监管策略的考量均具有一定的参考意义。  相似文献   

11.
本研究利用基因重组技术构建人IL35-IgG4(Fc)融合基因真核表达载体, 稳定转染CHO/DG44细胞并检测重组蛋白的表达。主要采用聚合酶链式反应(PCR)从脂多糖(Lipopolysaccharides, LPS)诱导的人髓性白血病细胞株KG-I cDNA文库中克隆EBI3和IL-12p35 cDNA, 重叠PCR法连接2个片段, 并克隆到IgG4(Fc)- pOptiVEC?-TOPO?载体上,对新构建的IL-35-IgG4 (Fc) pOptiVEC?-TOPO?真核表达载体并进行酶切、测序、PCR鉴定; 脂质体法转染CHO/DG44细胞; RT-PCR检测转染结果, 采用a-MEM-培养基筛选实验组细胞, 对筛选的阳性克隆细胞再进行氨甲喋呤(Methotrexate, MTX)的加压筛选, ProteinG-Agarose纯化阳性克隆培养上清, 免疫印迹检测目的蛋白表达。结果显示IL-35-IgG4 (Fc) pOptiVEC?-TOPO?表达载体稳定转染CHO/DG44细胞并获得阳性克隆; SDS-PAGE电泳得到一条与预期相对分子质量大小相符的蛋白条带; 该蛋白能与羊抗人IgG4抗体特异结合。本实验获得了能够稳定表达具有稳定结构的IL35-IgG4(Fc)融合蛋白的CHO/DG44细胞株。  相似文献   

12.
Binding of aggregated human immunoglobulin G (IgG) on diploid human fibroblasts leads to a rapid depolarization of the cells within 1-2 min. We resolved this membrane potential change into its plasma membrane and mitochondrial membrane components by measuring the transmembrane distribution of the lipophilic tritium-labelled cation tetraphenylphosphonium, [3H]Ph4P+. The responsibility of the plasma membrane for the membrane potential change, induced by binding of IgGs, is demonstrated. The IgG-induced membrane depolarization leads to the induction of prostaglandin E2 synthesis. Aggregated immunoglobulins (IgG) are specifically bound via the Fc portion because only binding of Fc fragments, in contrast to (Fab')2 fragments, leads to a stimulation of prostaglandin E2 synthesis comparable to that mediated by IgGs. Depolarization of the plasma membrane by short incubation of the fibroblasts in high-K+ buffer (5 min) results in a stimulation of prostaglandin E2 synthesis comparable to that mediated by either aggregated human IgGs or Fc fragments. Our previous results on Fc gamma-receptor-mediated antigen-IgG-antibody complex internalization showed that a maximum uptake of these complexes could be detected 60-90 min after binding. Therefore, we conclude that not internalisation but binding of aggregated IgGs to the Fc gamma receptors on human fibroblasts is the stimulus for plasma membrane depolarization leading to an enhanced prostaglandin E2 release.  相似文献   

13.
We propose INvariance of Noise (INN) space as a novel method for source localization of magnetoencephalography (MEG) data. The method is based on the fact that modulations of source strengths across time change the energy in signal subspace but leave the noise subspace invariant. We compare INN with classical MUSIC, RAP-MUSIC, and beamformer approaches using simulated data while varying signal-to-noise ratios as well as distance and temporal correlation between two sources. We also demonstrate the utility of INN with actual auditory evoked MEG responses in eight subjects. In all cases, INN performed well, especially when the sources were closely spaced, highly correlated, or one source was considerably stronger than the other.  相似文献   

14.
《MABS-AUSTIN》2013,5(2):409-421
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.  相似文献   

15.
It is known that antibodies to dengue viruses at subneutralizing concentrations enhance dengue virus infection of Fc gamma R+ cells. This phenomenon called antibody-dependent enhancement (ADE) occurs when virus-antibody complexes bind to the Fc gamma R via the Fc portion of the Ig. It has been hypothesized that ADE may be responsible for the pathogenesis of the severe manifestations of dengue virus infection including dengue hemorrhagic fever/dengue shock syndrome. To further analyze the mechanisms of ADE, we prepared bispecific antibodies by chemically cross-linking antidengue virus antibodies to antibodies specific for Fc gamma RI or Fc gamma RII and the non-Fc R molecules beta2 microglobulin, CD15 or CD33 and examined whether these bispecific antibodies could enhance infection. Bispecific antibodies targeting dengue virus to Fc gamma RI or Fc gamma RII enhanced dengue virus infection, consistent with previous reports using conventional antibodies. Furthermore, bispecific antibodies targeting dengue virus to beta2 microglobulin, CD15 or CD33 also enhanced dengue virus infection. Bispecific antibody mediated ADE was inhibited by pretreating the cells with the appropriate blocking mAb. These results indicate that cell surface molecules other than Fc gamma R can mediate ADE and suggest that the Fc gamma R does not provide a unique signal necessary for enhanced infection. We hypothesize that directing dengue virus to the cell surface by a bispecific antibody facilitates the interaction between dengue virus and its receptor, thereby increasing its infectivity.  相似文献   

16.
The Herpes Simplex Virus 1 (HSV-1) glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG). gE-gI can also participate in antibody bipolar bridging (ABB), a process by which the antigen-binding fragments (Fabs) of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI–bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI–dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.  相似文献   

17.
This article presents a real-time monitoring system for cellular analysis using micro total analysis systems technology. Time-resolved luminescence anisotropy analysis was adopted for real-time detection of small amounts of a target protein produced by a small number of cells. The system was tested by real-time monitoring of the antibody secretion by hybridomas. The cells were successfully cultivated in a micro-incubation chamber (240 nl) fabricated on a microchip. The quantification of the antibody was achieved using the Ru(II) complex-labeled Staphylococcus aureus protein A probe, which can bind specifically to the Fc region of the antibody. Using this system, we detected as little as 24 fmol of immunoglobulin G under physiological conditions without the bound/free separation protocol. We successfully achieved real-time and quantitative monitoring of small amounts of antibody production by approximately 200 hybridoma cells. This method could be applied to various cellular analyses using small numbers of cells.  相似文献   

18.
One of the promising methods of preparing antibody arrays is immobilizing antibodies with protein A or protein G, each of which binds specifically to the heavy chain constant (Fc) region of immunoglobulin G (IgG). In this system, antibody immobilization efficiency depends on the number of active Fc binding proteins that need to be immobilized on the surface. Here we have designed and constructed an Fc binding protein with a self-adhering ability that can be immobilized on the hydrophobic surface by simple adsorption. It consists of an Fc binding domain of protein G (G3) and hydrophobic domain of elastin (E72). Direct observation revealed its self-adhering ability on the hydrophobic surface. The enzyme-linked immunosorbent assay (ELISA) showed that it retained antibody binding ability on the surface. The antibody array model was prepared on a hydrophobic microwell glass slide with E72G3, which specifically detect the antigen with a sevenfold greater sensitivity than the G3-treated slide. These results suggest that the E72G3 is useful for simple and effective immobilization of antibodies and can be used to fabricate any immuno devices.  相似文献   

19.
Goetze AM  Liu YD  Arroll T  Chu L  Flynn GC 《Glycobiology》2012,22(2):221-234
Glycation of immunoglobulin G (IgG) can result from incubation with a reducing sugar in vitro or during circulation in vivo. Upon injection of a recombinantly produced human therapeutic IgG into humans, changes in the glycation levels could be observed as a function of circulation time. Mass changes on the individual IgG polypeptide chains as the results of glycation were determined using reversed-phase liquid chromatography/mass spectrometry. Changes to the light and heavy chains were low but easily detectable at 0.00092 and 0.0021 glucose (Glc) additions per chain per day, respectively. Levels of glycation found on the Fc portion of IgG isolated from healthy subjects, using a similar analytical approach, were on average 0.045 Glc molecules per fragment. In vivo glycation rates could be approximated in vitro by modeling the physiological glycation reaction with a simplified incubation containing physiological Glc concentrations, pH and temperature but with a high concentration of a single purified IgG. To test the impact of glycation on IgG function, highly glycated IgG1 and IgG2 were prepared containing on average 42-49 Glc molecules per IgG. Binding to FcγIIIa receptors, neonatal Fc receptor or protein A was similar or identical to the non-glycated IgG controls. Although the modifications were well distributed throughout the protein sequence, and at high enough levels to affect the elution position by size-exclusion chromatography, no changes in the tested Fc functions were observed.  相似文献   

20.
Human seminal plasma (SP) has been shown to affect several immunologic reactions in vitro. This might be due in part to the presence of proteins that specifically bind the Fc domain of IgG. By using mAb Leu 11a, Leu 11b, Leu 11c, and 3G8 we showed that the Fc binding of SP is associated with a molecule that antigenically resembles Fc gamma RIII. This molecule manifests specific affinity for solid phase-coupled IgG-Fc, and appears not be be cell membrane-associated. When compared with serum or blood plasma, its highest concentration was found in SP. Western blot analysis of SP performed with mAb Leu 11a, Leu 11b, Leu 11c, and 3G8 showed distinct bands at approximately 70 and 35 kDa, which contrasts with the broad area of electrophoretic mobility reported for membrane-bound Fc gamma RIII. These molecules in SP could influence maternal immune responses to paternal Ag during fertilization and pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号