首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxalates stimulate alterations in renal epithelial cells and thereby induce calcium oxalate (CaOx) stone formation. Bacillus subtilis YvrK gene encodes for oxalate decarboxylase (OxdC) which degrades oxalate to formate and CO2. The present work is aimed to clone the oxdC gene in a mammalian expression vector pcDNA and transfect into Human Embryonic Kidney 293 (HEK293) cells and evaluate the oxdC expression, cell survival rate and oxalate degrading efficiency. The results indicate cell survival rate of HEK293/pcDNAOXDC cells pre-incubated with oxalate was enhanced by 28%. HEK293/pcDNAOXDC cells expressing OxdC treated with oxalate, significantly restored antioxidant activity, mitochondrial membrane potential and intracellular reactive oxygen species (ROS) generation compared with HEK293/pcDNA. Apoptotic marker caspase 3 downregulation illustrates HEK293/pcDNAOXDC cells were able to survive under oxalate-mediated oxidative stress. The findings suggest HEK293 cells expressing oxdC capable of degrading oxalate protect cells from oxidative damage and thus serve as a therapeutic option for prevention of CaOx stone disease.

  相似文献   


2.
Context: Epidermal cells play an important role in regulating the regeneration of skin after burns and wounds.

Objective: The aim of our study is to explore the role of Tanshinone IIA (Tan IIA) in the apoptosis of epidermal HaCaT cells induced by H2O2, with a focus on mitochondrial homeostasis and inverted formin-2 (INF2).

Materials and methods: Cellular viability was determined using the MTT assay, TUNEL staining, western blot analysis and LDH release assay. Adenovirus-loaded INF2 was transfected into HaCaT cells to overexpress INF2 in the presence of Tan IIA treatment. Mitochondrial function was determined using JC-1 staining, mitochondrial ROS staining, immunofluorescence and western blotting.

Results: Oxidative stress promoted the death of HaCaT cells and this effect could be reversed by Tan IIA. At the molecular levels, Tan IIA treatment sustained mitochondrial energy metabolism, repressed mitochondrial ROS generation, stabilized mitochondrial potential, and blocked the mitochondrial apoptotic pathway. Furthermore, we demonstrated that Tan IIA modulated mitochondrial homeostasis via affecting INF2-related mitochondrial stress. Overexpression of INF2 could abolish the protective effects of Tan IIA on HaCaT cells viability and mitochondrial function. Besides, we also reported that Tan IIA regulated INF2 expression via the ERK pathway; inhibition of this pathway abrogated the beneficial effects of Tan IIA on HaCaT cells survival and mitochondrial homeostasis.

Conclusions: Overall, our results indicated that oxidative stress-mediated HaCaT cells apoptosis could be reversed by Tan IIA treatment via reducing INF2-related mitochondrial stress in a manner dependent on the ERK signaling pathway.  相似文献   


3.
Ca2+-activated Cl? currents have been implicated in many cellular processes in different cells, but for many years, their molecular identity remained unknown. Particularly intriguing are Ca2+-activated Cl? currents in olfactory transduction, first described in the early 90s. Well characterized electrophysiologically, they carry most of the odorant-induced receptor current in the cilia of olfactory sensory neurons (OSNs). After many attempts to determine their molecular identity, TMEM16B was found to be abundantly expressed in the cilia of OSNs in 2009 and having biophysical properties like those of the native olfactory channel. A TMEM16B knockout mouse confirmed that TMEM16B was indeed the olfactory Cl? channel but also suggested a limited role in olfactory physiology and behavior.

The question then arises of what the precise role of TMEM16b in olfaction is. Here we review the long story of this channel and its possible roles.  相似文献   


4.
Smooth muscle exhibitsmechanosensitivity independent of neural input, suggesting thatmechanosensitive pathways reside within smooth muscle cells. The nativeL-type calcium current recorded from human intestinal smooth muscle ismodulated by stretch. To define mechanosensitive mechanisms involved inthe regulation of smooth muscle calcium entry, we cloned the1C L-type calcium channel subunit (CaV1.2)from human intestinal smooth muscle and expressed the channel in aheterologous system. This channel subunit retained mechanosensitivitywhen expressed alone or coexpressed with a 2 calciumchannel subunit in HEK-293 or Chinese hamster ovary cells. Theheterologously expressed human cardiac 1C splice formalso demonstrated mechanosensitivity. Inhibition of kinase signalingdid not affect mechanosensitivity of the native channel. Truncation of the 1C COOH terminus, which containsan inhibitory domain and a proline-rich domain thought to mediatemechanosensitive signaling from integrins, did not disruptmechanosensitivity of the expressed channel. These data demonstratemechanical regulation of calcium entry through molecularly identifiedL-type calcium channels in mammalian cells and suggest that themechanosensitivity resides within the pore forming1C-subunit.

  相似文献   

5.
The epithelial sodium channel (ENaC) plays a pivotal role in sodium homeostasis, and the development of drugs that modulate ENaC activity is of great potential therapeutic relevance. We screened 6100 chemicals for their ability to activate sodium permeability of ENaC. We used a two-step strategy: a high throughput cell-based assay and an electrophysiological assay. Five compounds were identified showing common structural features including an indole or benzothiophene ring. ENaC consists of three subunits: α, β, and γ. Changing the heteromeric combination of human and mouse ENaC αβγ subunits, we found that all five compounds activated the human β subunit but not the mouse subunit. However, four of them exhibited lower activity when the human γ subunit was substituted by the mouse γ subunit. Our findings provide a structural basis for designing human ENaC activity modulators.

Abbreviations: ENaC: Epithelial sodium channel; ΔRFU: delta relative fluorescence units; EC50: Half-maximal effective concentration; Emax: maximum effect value.  相似文献   


6.
Context: Tumor cells due to distance from capillary vessels exist in different oxygenation conditions (anoxia, hypoxia, normoxia). Changes in cell oxygenation lead to reactive oxygen species production and oxidative stress. Sigma 1 receptor (Sig1R) is postulated to be stress responding agent and superoxide dismutases (SOD1 and SOD2) are key antioxidant enzymes. It is possible that they participate in tumor cells adaptation to different concentrations of oxygen.

Objective: Evaluation of Sig1R, SOD1, and SOD2 expression in different concentrations of oxygen (1%, 10%, 21%) in colon adenocarcinoma cell lines.

Materials and methods: SW480 (primary adenocarcinoma) and SW620 (metastatic) cell lines were cultured in standard conditions in Dulbecco’s modified Eagle’s medium for 5 days, and next cultured in Hypoxic Chamber in 1% O2, 10% O2, 21% O2. Number of living cells was determined by trypan blue assay. Level of mRNA for Sig1R, SOD1, and SOD2 was determined by standard PCR method. Statistical analysis was conducted using Statistica 10.1 software.

Results: We observed significant changes in expression of Sig1R, SOD1, SOD2 due to different oxygen concentrations. ANOVA analysis revealed significant interactions between studied parameters mainly in hypoxia conditions in SW480 cells and between Sig1R and SOD2 in SW620 cells. It also showed that changes in expression of studied proteins depend significantly on type of the cell line.

Conclusion: Changes of Sig1R and SOD2 expression point to mitochondria as main organelle responsible for survival of tumor cells exposed to hypoxia or oxidative stress. Studied proteins are involved in intracellular response to stress related with different concentrations of oxygen.  相似文献   


7.
Objectives: Extensive research has been dedicated to elucidating the mechanisms of signal transduction through different G protein-coupled receptors (GPCRs). However, relatively little is known about the regulation of receptor movement within the cell membrane upon ligand binding. In this study we focused our attention on the thyrotropin-releasing hormone (TRH) receptor that typically couples to Gq/11 proteins.

Methods: We monitored receptor diffusion in the plasma membrane of HEK293 cells stably expressing yellow fluorescent protein (YFP)-tagged TRH receptor (TRHR-YFP) by fluorescence recovery after photobleaching (FRAP).

Results: FRAP analysis indicated that the lateral movement of the TRH receptor was markedly reduced upon TRH binding as the value of its diffusion coefficient fell down by 55%. This effect was prevented by the addition of the TRH receptor antagonist midazolam. We also found that siRNA-mediated knockdown of Gq/11α, Gβ, β-arrestin2 and phospholipase Cβ1, but not of Giα1, β-arrestin1 or G protein-coupled receptor kinase 2, resulted in a significant decrease in the rate of TRHR-YFP diffusion, indicating the involvement of the former proteins in the regulation of TRH receptor behavior. The observed partial reduction of the TRHR-YFP mobile fraction caused by down-regulation of Giα1 and β-arrestin1 suggests that these proteins may also play distinct roles in THR receptor-mediated signaling.

Conclusion: These results demonstrate for the first time that not only agonist binding but also abundance of some signaling proteins may strongly affect TRH receptor dynamics in the plasma membrane.  相似文献   


8.
Objectives: Reactive oxygen species-mediated cell death contributes to the pathophysiology of cardiovascular disease and myocardial dysfunction. We recently showed that mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) functions as an antioxidant and anti-apoptotic protein by supplying NADPH to antioxidant systems.

Methods: In the present study, we demonstrated that H2O2-induced apoptosis and hypertrophy of H9c2 cardiomyoblasts was markedly exacerbated by small interfering RNA (siRNA) specific for IDH2.

Results: Attenuated IDH2 expression resulted in the modulation of cellular and mitochondrial redox status, mitochondrial function, and cellular oxidative damage. MitoTEMPO, a mitochondria-targeted antioxidant, efficiently suppressed increased caspase-3 activity, increased cell size, and depletion of cellular GSH levels in IDH2 siRNA-transfected cells that were treated with H2O2.

Discussion: These results indicated that the disruption of cellular redox balance might be responsible for the enhanced H2O2-induced apoptosis and hypertrophy of cultured cardiomyocytes by the attenuated IDH2 expression.  相似文献   


9.
10.
Objective: To explore the impact of oxidative insults on mitochondrial dynamics. In mammalian cells, oxidative insults activate stress response pathways including inflammation, cytokine secretion, and apoptosis. Intriguingly, mitochondria are emerging as a sensitive network that may function as an early indicator of subsequent cellular stress responses. Mitochondria form a dynamic network, balancing fusion, mediated by optic atrophy-1 (OPA1), and fission events, mediated by dynamin-related protein-1 (DRP1), to maintain homeostasis.

Methods: Here, we examine the impact of oxidative insults on mitochondrial dynamics in 143B osteosarcoma and H9c2 cardiomyoblast cell lines via confocal microscopy, flow cytometry, and protein-based analyses.

Results: When challenged with hydrogen peroxide (H2O2), a ROS donor, both cell lines display fragmentation of the mitochondrial network and loss of fusion-active OPA1 isoforms, indicating that OPA1-mediated mitochondrial fusion is disrupted by oxidative damage in mammalian cells. Consistent with this, cells lacking OMA1, a key protease responsible for cleavage of OPA1, are protected against OPA1 cleavage and mitochondrial fragmentation in response to H2O2 challenge.

Discussion: Taken together, these findings indicate that oxidative insults damage OPA1-mediated mitochondrial dynamics in mammalian cells via activation of OMA1, consistent with an emerging role for mitochondrial dynamics as an early indicator of cellular stress signaling.  相似文献   


11.
Objectives: Protein phosphatase 2A (PP2A), a major serine/threonine phosphatase, is also known to be a target of ROS. The methylation of PP2A can be catalyzed by leucine carboxyl methyltransferase-1 (LCMT1), which regulates PP2A activity and substrate specificity.

Methods: In the previous study, we have showed that LCMT1-dependent PP2Ac methylation arrests H2O2-induced cell oxidative stress damage. To explore the possible protective mechanism, we performed iTRAQ-based comparative quantitative proteomics and phosphoproteomics studies of H2O2-treated vector control and LCMT1-overexpressing cells.

Results: A total of 4480 non-redundant proteins and 3801 unique phosphopeptides were identified by this means. By comparing the H2O2-regulated proteins in LCMT1-overexpressing and vector control cells, we found that these differences were mainly related to protein phosphorylation, gene expression, protein maturation, the cytoskeleton and cell division. Further investigation of LCMT1 overexpression-specific regulated proteins under H2O2 treatment supported the idea that LCMT1 overexpression induced ageneral dephosphorylation of proteins and indicated increased expression of non-erythrocytic hemoglobin, inactivation of MAPK3 and regulation of proteins related to Rho signal transduction, which were known to be linked to the regulation of the cytoskeleton.

Discussion: These data provide proteomics and phosphoproteomics insights into the association of LCMT1-dependent PP2Ac methylation and oxidative stress and indirectly indicate that the methylation of PP2A plays an important role against oxidative stress.  相似文献   


12.
Objective: To investigate the dynamic variation in H3K4me3 and HP1 with employment length in nickel smelting workers.

Methods: Blood samples were collected from 140 nickel smelting workers and 140 age-matched office workers to test for H3K4me3, and HP1 levels.

Results: H3K4me3 was statistically significantly different (p?<?0.05) between the two groups and positively correlated with employment length (rs?=?0.267). HP1 was not correlated with employment length (p?=?0.066) but was significantly different between the two groups.

Conclusions: Chronic exposure to nickel can induce oxidative damage, and increase H3K4me3 expression and inhibit HP1 expression.  相似文献   


13.
14.
Objectives: In tissue samples from patients with colorectal cancer (CRC), oxidation of C420 and C457 of plakoglobin (Pg) within tumor tissue was identified by proteomic analysis. The aim of this study was to identify the roles of Pg C420 and C457.

Methods: Human CRC tissues, CRC and breast cancer cells, and normal mouse colon were prepared to validate Pg oxidation. MC38 cells were co-transfected with E-cadherin plus wild type (WT) or mutant (C420S or C457S) Pg to evaluate protein interactions and cellular localization, proliferation, and migration.

Results: Pg was more oxidized in stage III CRC tumor tissue than in non-tumor tissue. Similar oxidation of Pg was elicited by H2O2 treatment in normal colon and cancer cells. C457S Pg exhibited diminished binding to E-cadherin and α-catenin, and reduced the assembly of E-cadherin–α-/β-catenin complexes. Correspondingly, immunofluorescent analysis of Pg cellular localization suggested impaired binding of C457S Pg to membranes. Cell migration and proliferation were also suppressed in C457S-expressing cells.

Discussion: Pg appears to be redox-sensitive in cancer, and the C457 modification may impair cell migration and proliferation by affecting its interaction with the E-cadherin/catenin axis. Our findings suggest that redox-sensitive cysteines of Pg may be the targets for CRC therapy.  相似文献   


15.
Context: Poly-l-glutamic acid (PGA) is an anionic polymer with a large number of carboxyl groups that can interact electrostatically with cationic drugs such as doxorubicin (DOX).

Objective: For stable encapsulation of DOX into liposomes, we prepared triethylamine (TEA)-PGA-liposomes using PGA as an internal trapping agent.

Methods: We prepared TEA-PGA-liposomes by remote loading of DOX with a TEA gradient into preformed liposomes prepared with 1, 2, or 4?mg/mL PGA (molecular weights 4800, 9800, and 20 500), and evaluated their biodistribution and antitumor effects on Lewis lung carcinoma (LLC) tumor-bearing mice.

Results: TEA-PGA-liposomes using the higher the molecular weight or concentration of PGA showed a slower release of DOX from the liposomes. TEA-PGA-liposomes prepared with a high concentration of PGA could enhance DOX accumulation in tumors and prolonged DOX circulation in the serum, indicating that DOX may be retained stably in the liposomal interior by interaction with PGA. Furthermore, injection of TEA-PGA-liposomes prepared with 4?mg/mL of PGA9800 or 2?mg/mL PGA20500 strongly inhibited tumor growth in LLC tumor-bearing mice.

Conclusions: PGA may be a potential trapping agent for liposomal DOX for tumor drug delivery.  相似文献   


16.
Objective: The objective of this study is to evaluate the relevance of Lp-PLA2 to risk prediction among coronary heart disease (CHD) patients.

Methods: Lp-PLA2 activity was measured in 2538 CHD patients included in the Bezafibrate Infarction Prevention (BIP) study.

Results: Adjusting for patient characteristics and traditional risk factors, 1 standard deviation of Lp-PLA2 was associated with a hazard ratio (HR) of 1.12 (95% confidence interval (CI): 1.00–1.25) for mortality and 1.03 (0.93–1.14) for cardiovascular events. Lp-PLA2 did not significantly improve model discrimination, or calibration nor result in noteworthy reclassification.

Conclusions: Our results do not support added value of Lp-PLA2 for predicting cardiovascular events or mortality among CHD patients beyond traditional risk factor.  相似文献   


17.
Objective: To define whether aberrant methylation of DNA repair genes is associated with chronic arsenic poisoning.

Methods: Hundred and two endemic arsenicosis patients and 36 healthy subjects were recruited. Methylight and bisulfite sequencing (BSP) assays were used to examine the methylation status of ERCC1, ERCC2 and XPC genes in peripheral blood lymphocytes (PBLs) and skin lesions of arsenicosis patients and NaAsO2-treated HaCaT cells.

Results: Hypermethylation of ERCC1 and ERCC2 and suppressed gene expression were found in PBLs and skin lesions of arsenicosis patients and was correlated with the level of arsenic exposure. Particularly, the expression of ERCC1 and ERCC2 was associated with the severity of skin lesions. In vitro studies revealed an induction of ERCC2 hypermethylation and decreased mRNA expression in response to NaAsO2 treatment.

Conclusion: Hypermethylation of ERCC1 and ERCC2 and concomitant suppression of gene expression might be served as the epigenetic marks associated with arsenic exposure and adverse health effects.  相似文献   


18.
Acute hypoxia causes pulmonary vasoconstriction in part by inhibiting voltage-gated K+ (Kv) channel activity in pulmonary artery smooth muscle cells (PASMC). The hypoxia-mediated decrease in Kv currents [IK(V)] is selective to PASMC; hypoxia has little effect on IK(V) in mesenteric artery smooth muscle cells (MASMC). Functional Kv channels are homo- and/or heterotetramers of pore-forming -subunits and regulatory -subunits. KCNA5 is a Kv channel -subunit that forms functional Kv channels in PASMC and regulates resting membrane potential. We have shown that acute hypoxia selectively inhibits IK(V) through KCNA5 channels in PASMC. Overexpression of the human KCNA5 gene increased IK(V) and caused membrane hyperpolarization in HEK-293, COS-7, and rat MASMC and PASMC. Acute hypoxia did not affect IK(V) in KCNA5-transfected HEK-293 and COS-7 cells. However, overexpression of KCNA5 in PASMC conferred its sensitivity to hypoxia. Reduction of PO2 from 145 to 35 mmHg reduced IK(V) by 40% in rat PASMC transfected with human KCNA5 but had no effect on IK(V) in KCNA5-transfected rat MASMC (or HEK and COS cells). These results indicate that KCNA5 is an important Kv channel that regulates resting membrane potential and that acute hypoxia selectively reduces KCNA5 channel activity in PASMC relative to MASMC and other cell types. Because Kv channels (including KCNA5) are ubiquitously expressed in PASMC and MASMC, the observation from this study indicates that a hypoxia-sensitive mechanism essential for inhibiting KCNA5 channel activity is exclusively present in PASMC. The divergent effect of hypoxia on IK(V) in PASMC and MASMC also may be due to different expression levels of KCNA5 channels. membrane potential; potassium channels; vascular smooth muscle  相似文献   

19.
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+ (BK) channels using human embryonic kidney (HEK)-293 cells, in which the -subunit of the BK channel (BK-), both - and 1-subunits (BK-1), or both - and 4-subunits (BK-4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-1 within a similar concentration range. Because methAEA could potentiate BK-, BK-1, and BK-4 with similar efficacy, the -subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK- and HEK-BK-1 did not change intracellular Ca2+ concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1 antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2 agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed. anandamide; channel opener  相似文献   

20.
Activation of G protein-gated inwardly rectifying K+ (GIRK) channels, found in the brain, heart, and endocrine tissue, leads to membrane hyperpolarization that generates neuronal inhibitory postsynaptic potentials, slows the heart rate, and inhibits hormone release. During stimulation of Gi/o-coupled receptors and subsequent channel activation, it has been observed that the current desensitizes. In this study we examined mechanisms underlying fast desensitization of cloned heteromeric neuronal Kir3.1+3.2A and atrial Kir3.1+3.4 channels and also homomeric Kir3.0 currents in response to stimulation of several Gi/o G protein-coupled receptors (GPCRs) expressed in HEK-293 cells (adenosine A1, adrenergic 2A, dopamine D2S, M4 muscarinic, and GABAB1b/2 receptors). We found that all agonist-induced currents displayed a similar degree of desensitization except the adenosine A1 receptor, which exhibits an additional desensitizing component. Using the nonhydrolyzable GTP analog guanosine 5'-O-(3-thiotriphosphate) (GTPS), we found that this is due to a receptor-dependent, G protein-independent process. Using Ca2+ imaging we showed that desensitization is unlikely to be accounted for solely by phospholipase C activation and phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. We examined the contribution of the G protein cycle and found the following. First, agonist concentration is strongly correlated with degree of desensitization. Second, competitive inhibition of GDP/GTP exchange by using nonhydrolyzable guanosine 5'-O-(2-thiodiphosphate) (GDPS) has two effects, a slowing of channel activation and an attenuation of the fast desensitization phenomenon. Finally, using specific G subunits we showed that ternary complexes with fast activation rates display more prominent desensitization than those with slower activation kinetics. Together our data suggest that fast desensitization of GIRK currents is accounted for by the fundamental properties of the G protein cycle. G protein-coupled receptor; potassium channel; inward rectifier; kinetics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号