首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis'' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology.  相似文献   

2.
A cluster of similar trends emerging in separate fields of science and philosophy points to new opportunities to apply biosemiotic ideas as tools for conceptual integration in theoretical biology. I characterize these developments as the outcome of a “relational turn” in these disciplines. They signal a shift of attention away from objects and things and towards relational structures and processes. Increasingly sophisticated research technologies of molecular biology have generated an enormous quantity of experimental data, sparking a need for relational approaches that could help to find recurrent patterns in the mass of data. Earlier conceptions of relational biology and cybernetics, once deemed too abstract and speculative, are now resurrected and applied by means of new computational and simulation tools. I think this receptivity should be extended to incorporate nets of semiotic relations as heuristic guides for discerning global patterns of interactions in living systems. In this article I review aspects of systems biology and new directions in evolutionary theory, focusing on the role of circular and downward causation in relational structures and dynamical networks. I also indicate promising avenues of integration of some ideas of biosemiotics with those emerging from these new currents in biology. Relational developments in biology bear a telling similarity to a parallel relational turn presently manifest in the philosophy of science, rooted in the philosophy of physics and mathematics and in different varieties of structural and informational realism. The recognition of the relational nature of reality within these disciplines entails a tacit repudiation of nominalistic biases in science that have hindered the reception of semitiotic conceptions in biology. In previous investigations I explored connections between two kinds of relational structures: the networks of self-referential circular loops that appear pervasively in living systems, and the triadic relational structures that Peircean semiotics places at the basis of all semiotic transactions. Current relational views in the sciences seem oblivious to the difference between dyadic and triadic relations. Incorporating this essential distinction from biosemiotics into other fields could be a first step in seizing the opportunities opened by the relational turn for a renewal of biology and of natural philosophy in general, across disciplinary boundaries.  相似文献   

3.
Microsatellite DNA loci have recently been adopted for many biological applications. Comparative studies across a wide range of species has revealed many details of their mutational properties and evolutionary life cycles. Experience shows that a full understanding of these processes is essential to ensure the effective use of microsatellites as analytical tools. In this article, we review the controversies that have arisen as biologists have taken up this new technology and the emerging consensus that has resulted from their debates. We point to the need for comparative DNA sequencing studies to produce input data for a new generation of theoretical models of microsatellite behaviour. We conclude by presenting our own conceptual model, ‘Snakes and Ladders’, as an aid to theory development.  相似文献   

4.
Recent work which combines methods from linguistics and evolutionary biology has been fruitful in discovering the history of major language families because of similarities in evolutionary processes. Such work opens up new possibilities for language research on previously unsolvable problems, especially in areas where information from other sources may be lacking. I use phylogenetic methods to investigate Tasmanian languages. Existing materials are so fragmentary that scholars have been unable to discover how many languages are represented in the sources. Using a clustering algorithm which identifies admixture, source materials representing more than one language are identified. Using the Neighbor-Net algorithm, 12 languages are identified in five clusters. Bayesian phylogenetic methods reveal that the families are not demonstrably related; an important result, given the importance of Tasmanian Aborigines for information about how societies have responded to population collapse in prehistory. This work provides insight into the societies of prehistoric Tasmania and illustrates a new utility of phylogenetics in reconstructing linguistic history.  相似文献   

5.
An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential. Must our models include processes from all of these fields? We argue that answering this critical question is ultimately an empirical exercise requiring a substantial amount of data that have not been integrated for any system to date. To motivate and facilitate the necessary data collection and integration, we first review the potential importance of each mechanism for skilful prediction. We then develop a conceptual framework based on reaction norms, and propose a hierarchical Bayesian statistical framework to integrate processes affecting reaction norms at different scales. The ambitious research programme we advocate is rapidly becoming feasible due to novel collaborations, datasets and analytical tools.  相似文献   

6.
Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology.  相似文献   

7.
Pedigrees illustrate the genealogical relationships among individuals, and phylogenies do the same for groups of organisms (such as species, genera, etc.). Here, I provide a brief survey of current concepts and methods for calculating and displaying genealogical relationships. These relationships have long been recognized to be reticulating, rather than strictly divergent, and so both pedigrees and phylogenies are correctly treated as networks rather than trees. However, currently most pedigrees are instead presented as “family trees”, and most phylogenies are presented as phylogenetic trees. Nevertheless, the historical development of concepts shows that networks pre-dated trees in most fields of biology, including the study of pedigrees, biology theory, and biology practice, as well as in historical linguistics in the social sciences. Trees were actually introduced in order to provide a simpler conceptual model for historical relationships, since trees are a specific type of simple network. Computationally, trees and networks are a part of graph theory, consisting of nodes connected by edges. In this mathematical context they differ solely in the absence or presence of reticulation nodes, respectively. There are two types of graphs that can be called phylogenetic networks: (1) rooted evolutionary networks, and (2) unrooted affinity networks. There are quite a few computational methods for unrooted networks, which have two main roles in phylogenetics: (a) they act as a generic form of multivariate data display; and (b) they are used specifically to represent haplotype networks. Evolutionary networks are more difficult to infer and analyse, as there is no mathematical algorithm for reconstructing unique historical events. There is thus currently no coherent analytical framework for computing such networks.  相似文献   

8.
Joan D. Ferraris 《Hydrobiologia》1993,266(1-3):255-265
Molecular biological tools currently available to us are revolutionizing the way in which we can address questions in evolutionary biology. The purpose of this article is to provide an overview of molecular techniques and applications available to biologists who are interested in evolutionary studies but who have little acquaintance with molecular biology. In evolutionary biology, techniques designed to determine degree of nucleic acid similarity are in common use and will be dealt with first. Another approach, namely gene expression studies, has strong implications for evolutionary biology but generally requires substantial familiarity with molecular biological tools. Expression studies provide powerful tools for discerning processes of speciation, as in the selection of genetic variants, as well as discerning lineages, e.g., expression of specific homeobox genes during segment formation. For investigations where either nucleic acid identity or gene expression are the ultimate goal, detailed information, protocols and appropriate controls are beyond the scope of this work but, where possible, recent review articles are cited.  相似文献   

9.
10.
Although parasitism is one of the most common lifestyles among eukaryotes, population genetics on parasites lag for behind those on free-living organisms. Yet, the advent of molecular markers offers great tools for studying important processes, such as dispersal, mating systems, adaptation to host and speciation. Here we highlight some studies that used molecular markers to address questions about the population genetics of fungal (including oomycetes) plant pathogens. We conclude that population genetics approaches have provided tremendous insights into the biology of a few fungal parasites and warrant more wide use in phytopathology. However, theoretical advances are badly needed to best apply the existing methods. Fungi are of prime interest not only because they are major parasites of plants and animals, but they also constitute tractable and highly useful models for understanding evolutionary processes. We hope that the emerging field of fungal evolution will attract more evolutionary biologists in the near future.  相似文献   

11.
We have investigated the mechanism and the evolutionary pathway of protein dimerization through analysis of experimental structures of dimers. We propose that the evolution of dimers may have multiple pathways, including (1) formation of a functional dimer directly without going through an ancestor monomer, (2) formation of a stable monomer as an intermediate followed by mutations of its surface residues, and (3), a domain swapping mechanism, replacing one segment in a monomer by an equivalent segment from an identical chain in the dimer. Some of the dimers which are governed by a domain swapping mechanism may have evolved at an earlier stage of evolution via the second mechanism. Here, we follow the theory that the kinetic pathway reflects the evolutionary pathway. We analyze the structure-kinetics-evolution relationship for a collection of symmetric homodimers classified into three groups: (1) 14 dimers, which were referred to as domain swapping dimers in the literature; (2) nine 2-state dimers, which have no measurable intermediates in equilibrium denaturation; and (3), eight 3-state dimers, which have stable intermediates in equilibrium denaturation. The analysis consists of the following stages: (i) The dimer is divided into two structural units, which have twofold symmetry. Each unit contains a contiguous segment from one polypeptide chain of the dimer, and its complementary contiguous segment from the other chain. (ii) The division is repeated progressively, with different combinations of the two segments in each unit. (iii) The coefficient of compactness is calculated for the units in all divisions. The coefficients obtained for different cuttings of a dimer form a compactness profile. The profile probes the structural organization of the two chains in a dimer and the stability of the monomeric state. We describe the features of the compactness profiles in each of the three dimer groups. The profiles identify the swapping segments in domain swapping dimers, and can usually predict whether a dimer has domain swapping. The kinetics of dimerization indicates that some dimers which have been assigned in the literature as domain swapping cases, dimerize through the 2-state kinetics, rather than through swapping segments of performed monomers. The compactness profiles indicate a wide spectrum in the kinetics of dimerization: dimers having no intermediate stable monomers; dimers having an intermediate with a stable monomer structure; and dimers having an intermediate with a stable structure in part of the monomer. These correspond to the multiple evolutionary pathways for dimer formation. The evolutionary mechanisms proposed here for dimers are applicable to other oligomers as well.  相似文献   

12.
Evolutionary developmental biology (evo-devo) offers both an account of developmental processes and also new integrative frameworks for analyzing interactions between development and evolution. Biologists and philosophers are keen on evo-devo in part because it appears to offer a comfort zone between, on the one hand, what some take to be the relative inability of mainstream evolutionary biology to integrate a developmental perspective; and, on the other hand, what some take to be more intractable syntheses of development and evolution. In this article, I outline core concerns of evo-devo, distinguish theoretical and practical variants, and counter Sterelny's recent argument that evo-devo's attention to development, while important, offers no significant challenge to evolutionary theory as we know it. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Pedro C Marijuán 《Bio Systems》2002,64(1-3):111-118
The growth of numerous subdisciplines at the interface between biology and computer science paves the way for reconsidering the special relationship between information and life. In this sense, the term 'bioinformation' appears as an integrative notion that is useful to promote a new understanding of the heterogeneous networkings that characterize life. Two conceptual avenues are explored here: representation and symmetry. It is argued that the special organization of the living cell, based on the overlapping of both sequential and 'amorphous' architectures, endlessly strives to fill in the occurring 'functional voids' or symmetry breakings; and it endlessly produces physiological networkings and evolutionary novelties as a byproduct. Characterizing the special dynamics inherent in the living cell may be a precondition for understanding the information-production processes on which other emergent informational entities are based, particularly, nervous systems and societies.  相似文献   

14.
Zarowiecki M  Loaiza JR  Conn JE 《Parasitology》2011,138(13):1723-1729
Vector systematics research is being transformed by the recent development of theoretical, experimental and analytical methods, as well as conceptual insights into speciation and reconstruction of evolutionary history. We review this progress using examples from the mosquito genus Anopheles. The conclusion is that recent progress, particularly in the development of better tools for understanding evolutionary history, makes systematics much more informative for vector control purposes, and has increasing potential to inform and improve targeted vector control programmes.  相似文献   

15.
Recent developments in evolutionary biology have led to a call for an extension of standard evolutionary theory, with its emphasis on processes such as selection and drift, into a much larger theoretical framework that includes processes such as niche construction, developmental plasticity, inclusive inheritance, and developmental bias. Skeptics argue that these processes are already subsumed within the standard theory and thus an extension is not required. Here, we outline what this evolutionary “rethink” might mean for the study of human origins. Specifically, can paleoanthropologists benefit from an extended theoretical toolkit? The papers in this special issue suggest it can be useful but may not be necessary, depending on the kinds of questions that are being asked.  相似文献   

16.
Recent recognition that ecological and evolutionary processes can operate on similar timescales has led to a rapid increase in theoretical and empirical studies on eco‐evolutionary dynamics. Progress in the fields of evolutionary biology, genomics and ecology is greatly enhancing our understanding of rapid adaptive processes, the predictability of adaptation and the genetics of ecologically important traits. However, progress in these fields has proceeded largely independently of one another. In an attempt to better integrate these fields, the centre for ‘Adaptation to a Changing Environment’ organized a conference entitled ‘The genomic basis of eco‐evolutionary change’ and brought together experts in ecological genomics and eco‐evolutionary dynamics. In this review, we use the work of the invited speakers to summarize eco‐evolutionary dynamics and discuss how they are relevant for understanding and predicting responses to contemporary environmental change. Then, we show how recent advances in genomics are contributing to our understanding of eco‐evolutionary dynamics. Finally, we highlight the gaps in our understanding of eco‐evolutionary dynamics and recommend future avenues of research in eco‐evolutionary dynamics.  相似文献   

17.
Metabolic network analysis has attracted much attention in the area of systems biology. It has a profound role in understanding the key features of organism metabolic networks and has been successfully applied in several fields of systems biology, including in silico gene knockouts, production yield improvement using engineered microbial strains, drug target identification, and phenotype prediction. A variety of metabolic network databases and tools have been developed in order to assist research in these fields. Databases that comprise biochemical data are normally integrated with the use of metabolic network analysis tools in order to give a more comprehensive result. This paper reviews and compares eight databases as well as twenty one recent tools. The aim of this review is to study the different types of tools in terms of the features and usability, as well as the databases in terms of the scope and data provided. These tools can be categorised into three main types: standalone tools; toolbox-based tools; and web-based tools. Furthermore, comparisons of the databases as well as the tools are also provided to help software developers and users gain a clearer insight and a better understanding of metabolic network analysis. Additionally, this review also helps to provide useful information that can be used as guidance in choosing tools and databases for a particular research interest.  相似文献   

18.
In an effort to understand how to improve student learning about evolution, a focus of science education research has been to document and address students?? naive ideas. Less research has investigated how students reason about alternative scientific models that attempt to explain the same phenomenon (e.g., which causal model best accounts for evolutionary change?). Within evolutionary biology, research has yet to explore how non-adaptive factors are situated within students?? conceptual ecologies of evolutionary causation. Do students construct evolutionary explanations that include non-adaptive and adaptive factors? If so, how are non-adaptive factors structured within students?? evolutionary explanations? We used clinical interviews and two paper and pencil instruments (one open-response and one multiple-choice) to investigate the use of non-adaptive and adaptive factors in undergraduate students?? patterns of evolutionary reasoning. After instruction that included non-adaptive causal factors (e.g., genetic drift), we found them to be remarkably uncommon in students?? explanatory models of evolutionary change in both written assessments and clinical interviews. However, consistent with many evolutionary biologists?? explanations, when students used non-adaptive factors they were conceptualized as causal alternatives to selection. Interestingly, use of non-adaptive factors was not associated with greater understanding of natural selection in interviews or written assessments, or with fewer naive ideas of natural selection. Thus, reasoning using non-adaptive factors appears to be a distinct facet of evolutionary thinking. We propose a theoretical framework for an expert?Cnovice continuum of evolutionary reasoning that incorporates both adaptive and non-adaptive factors, and can be used to inform instructional efficacy in evolutionary biology.  相似文献   

19.
Natural selection shapes patterns of genetic variation among individuals, populations, and species, and it does so differentially across genomes. The field of population genomics provides a comprehensive genome-scale view of the action of selection, even beyond traditional model organisms. However, even with nearly complete genomic sequence information, our ability to detect the signature of selection on specific genomic regions depends on choosing experimental and analytical tools appropriate to the biological situation. For example, processes that occur at different timescales, such as sorting of standing genetic variation, mutation-selection balance, or fixed interspecific divergence, have different consequences for genomic patterns of variation. Inappropriate experimental or analytical approaches may fail to detect even strong selection or falsely identify a signature of selection. Here we outline the conceptual framework of population genomics, relate genomic patterns of variation to evolutionary processes, and identify major biological factors to be considered in studies of selection. As data-gathering technology continues to advance, our ability to understand selection in natural populations will be limited more by conceptual and analytical weaknesses than by the amount of molecular data. Our aim is to bring critical biological considerations to the fore in population genomics research and to spur the development and application of analytical tools appropriate to diverse biological systems.  相似文献   

20.
The association between two or more lineages over evolutionary time is a recurrent theme spanning several different fields within biology, from molecular evolution to coevolution and biogeography. In each `historical association', one lineage is associated with another, and can be thought of as tracking the other over evolutionary time with a greater or lesser degree of fidelity. Examples include genes tracking organisms, parasites tracking hosts and organisms tracking geological and geographical changes. Parallels among these problems raise the tantalizing prospect that each is a special case of a more general problem, and that a single analytical tool can be applied to all three kinds of association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号