首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
The contraction of smooth muscle is regulated primarily by intracellular Ca2+ signal. It is well established that the elevation of the cytosolic Ca2+ level activates myosin light chain kinase, which phosphorylates 20 kDa regulatory myosin light chain and activates myosin ATPase. The simultaneous measurement of cytosolic Ca2+ concentration and force development revealed that the alteration of the Ca2+-sensitivity of the contractile apparatus as well as the Ca2+ signal plays a critical role in the regulation of smooth muscle contraction. The fluctuation of an extent of myosin phosphorylation for a given change in Ca2+ concentration is considered to contribute to the major mechanisms regulating the Ca2+-sensitivity. The level of myosin phosphorylation is determined by the balance between phosphorylation and dephosphorylation. The phosphorylation level for a given Ca2+ elevation is increased either by Ca2+-independent activation of phosphorylation process or inhibition of dephosphorylation. In the last decade, the isolation and cloning of myosin phosphatase facilitated the understanding of regulatory mechanism of dephosphorylation process at the molecular level. The inhibition of myosin phosphatase can be achieved by (1) alteration of hetrotrimeric structure, (2) phosphorylation of 110 kDa regulatory subunit MYPT1 at the specific site and (3) inhibitory protein CPI-17 upon its phosphorylation. Rho-kinase was first identified to phosphorylate MYPT1, and later many kinases were found to phosphorylate MYPT1 and inhibit dephosphorylation of myosin. Similarly, the phosphorylation of CPI-17 can be catalysed by multiple kinases. Moreover, the myosin light chain can be phosphorylated by not only authentic myosin light chain kinase in a Ca2+-dependent manner but also by multiple kinases in a Ca2+-independent manner, thus adding a novel mechanism to the regulation of the Ca2+-sensitivity by regulating the phosphorylation process. It is now clarified that the protein kinase network is involved in the regulation of myosin phosphorylation and dephosphorylation. However, the physiological role of each component remains to be determined. One approach to accomplish this purpose is to investigate the effects of the dominant negative mutants of the signalling molecule on the smooth muscle contraction. In this regards, a protein transduction technique utilizing the cell-penetrating peptides would provide a useful tool. In the preliminary study, we succeeded in introducing a fragment of MYPT1 into the arterial strips, and found enhancement of contraction.  相似文献   

3.
平滑肌细胞迁移的肌球蛋白轻链非磷酸化途径   总被引:2,自引:0,他引:2  
为了阐明平滑肌细胞迁移存在肌球蛋白轻链非磷酸化调节途径,研究花生四烯酸(arachidonicacid,AA)对肌球蛋白轻链非磷酸化状态下平滑肌细胞迁移的影响及其相关的信号传导途径.经Boyden小室跨膜迁移实验发现,AA对培养的兔血管平滑肌SM3细胞具有明显的诱导迁移作用.然而,当预先用10μmolL肌球蛋白轻链激酶(myosinlightchainkinase,MLCK)特异性抑制剂ML7作用SM3细胞后,发现AA对SM3细胞仍然具有明显的诱导迁移作用,并呈剂量依赖性,这种诱导作用可被细胞外信号调节激酶12(ERK12)的特异性抑制剂PD98059或磷脂酶C(PLC)的特异性抑制剂U73122所拮抗.此外,Ⅱ型肌球蛋白抑制剂blebbistatin(BLB)可部分抑制“非磷酸化”状态下AA的诱导迁移作用.经Western印迹检测显示,10μmolLML7可完全抑制SM3细胞中20kD肌球蛋白轻链(MLC20)磷酸化,并且加入AA后MLC20仍为非磷酸化状态.应用免疫荧光染色法观察肌动蛋白在SM3细胞中分布的变化,发现在AA作用下肌动蛋白呈细胞边缘聚集现象,有伪足形成,细胞形态表现为迁移状态.预先用ML7作用后再加入AA,肌动蛋白的分布与上述结果相同.研究结果初步表明,在平滑肌细胞迁移的作用途径中,在MLC磷酸化调节途径受到抑制时,AA可诱导MLC非磷酸化的平滑肌细胞发生迁移,其分子机理可能与ERK12和PLC信号传导途径有关,非磷酸化的肌球蛋白直接参与了该迁移过程.  相似文献   

4.
5.
肌球蛋白轻链激酶(myosin light chain kinase, MLCK)具有激酶活性和非激酶活性,在平滑肌收缩过程中起着关键酶调控的作用.为探寻MLCK的非激酶活性区域对MLCK活性的影响,以进一步阐明MLCK的非激酶活性在调节平滑肌收缩过程中的分子机制.采用PCR技术构建MLCK部分氨基酸缺失的重组表达载体pGEX-F6-5/D,经大肠杆菌表达得到可溶性GST融合蛋白,利用SDS-PAGE及Western 印迹鉴定表达的MLCK在细胞中的分布,结果还显示,提取液的上清和沉淀中均有MLCK片段的表达.运用亲和层析技术分离并纯化删除前、后表达的MLCK片段(F6.5和F6-5/D),经谷胱甘肽琼脂糖凝胶 4B 纯化,SDS-PAGE鉴定显示为单一表达条带.应用EnzChek磷分析试剂盒和孔雀绿两种方法分别测定不同浓度的MLCK对非磷酸化肌球蛋白Mg2+-ATP酶活性的影响.两种MLCK的片段均具有激活ATP酶活性的作用,并随MLCK浓度的增加,酶的活性增加.比较删除前后不同MLCK片段对ATP酶活性的影响结果显示,删除MLCK片段1002位丙氨酸至1019位亮氨酸后,对ATP酶的激活作用较删除前明显降低,表明删除的部分氨基酸序列为MLCK非激酶活性所必需的区域.利用电镜技术观察到MLCK片段(F6.5)使非磷酸化肌球蛋白构象发生明显的变化.加入MLCK片段后肌球蛋白的构象由非活性型转化为活性型,并且MLCK片段还具有促进肌球蛋白单体形成肌丝的作用.  相似文献   

6.
7.
8.
The expression of smooth muscle myosin light chain kinase (MLCK) was investigated during chicken gizzard development. The molecular weight and the antigenic properties of MLCK did not change during development. The use of anion exchange high performance liquid chromatography (HPLC) enabled us to distinguish between MLCKs from post-hatched and adult chickens. A partial amino acid sequence determination of 4-day-old gizzard MLCK failed to disclose differences in the primary sequences of the two proteins. The results suggest that MLCK has the same primary sequence in all sequences of the two proteins. The results suggest that MLCK has the same primary sequence in all stages of gizzard development, although charge variants due to post-translational modifications may exist.  相似文献   

9.
d-尼古丁对血管平滑肌细胞迁移的影响   总被引:1,自引:0,他引:1  
为了在分子水平上揭示吸烟导致动脉粥样硬化的机制,探讨了烟草致病的主要成分d-尼古丁对豚鼠大脑基底动脉血管平滑肌细胞GbaSM-4迁移作用的影响。应用Boyden小室实验发现,d-尼古丁具有促进GbaSM-4细胞迁移的作用。免疫荧光染色显示,在d-尼古丁作用下有GbaSM-4细胞伪足内肌动蛋白表达和分布增加的现象。为了进一步阐明d-尼古丁促进平滑肌细胞迁移作用的分子机制,应用RT-PCR方法检测到在GbaSM-4细胞内有α7型烟碱乙酰胆碱受体的表达。应用烟碱乙酰胆碱受体的特异性抑制剂甲基牛扁碱和肌肉收缩的关键酶——肌球蛋白轻链激酶(myosin light chain kinase,MLCK)抑制剂ML-9作用GbaSM-4细胞后,发现d-尼古丁对GbaSM-4细胞的诱导迁移作用被明显的抑制。采用RNA干扰技术,成功地使GbaSM-4细胞内MLCK的表达水平下调,观察到d-尼古丁对GbaSM-4细胞的诱导迁移作用也被明显的抑制。上述研究结果表明,d-尼古丁以趋化因子的作用促进血管平滑肌细胞迁移,其分子机制可能与α7型烟碱乙酰胆碱受体和MLCK等因素有关,这一发现为揭示吸烟导致动脉粥样硬化提供了实验依据。  相似文献   

10.
    
Mechanical properties and isoform composition of myosin heavy and light chains were studied in hypertrophying rat urinary bladders. Growth of the bladder was induced by partial ligation of the urethra. Preparations were obtained after 10 days. In maximally activated skinned preparations from the hypertrophying tissue, the maximal shortening velocity and the rate of force development following photolytic release of ATP were reduced by about 20 and 25%, respectively. Stiffness was unchanged. The relative content of the basic isoform of the essential 17 kDa myosin light chain was doubled in the hypertrophied tissue. The expression of myosin heavy chain with a 7 amino acid insert at the 25K/50K region was determined using a peptide-derived antibody against the insert sequence. The relative amount of heavy chain with insert was decreased to 50%, in the hypertrophic tissue. The kinetics of the cross-bridge turn-over in the newly formed myosin in the hypertrophic smooth muscle is reduced, which might be related to altered expression of myosin heavy or light chain isoforms. © 1996 Wiley-Liss, Inc.  相似文献   

11.
    
Par-4 (prostate apoptosis response 4) is a pro-apoptotic protein and tumour suppressor that was originally identified as a gene product up-regulated during apoptosis in prostate cancer cells. Here, we show, for the first time, that Par-4 is expressed and co-localizes with the actin filament bundles in vascular smooth muscle. Furthermore, we demonstrate that targeting of ZIPK to the actin filaments, as observed upon PGF-2α stimulation, is inhibited by the presence of a cell permeant Par-4 decoy peptide. The same decoy peptide also significantly inhibits PGF-2α induced contractions of smooth muscle tissue. Moreover, knockdown of Par-4 using antisense morpholino nucleotides results in significantly reduced contractility, and myosin light chain and myosin phosphatase target subunit phosphorylation. These results indicate that Par-4 facilitates contraction by targeting ZIPK to the vicinity of its substrates, myosin light chain and MYPT, which are located on the actin filaments. These results identify Par-4 as a novel regulator of myosin light chain phosphorylation in differentiated, contractile vascular smooth muscle.  相似文献   

12.
Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 +/- 0.01, 1.14 +/- 0.12, and 1.31 +/- 0.08 mM. Force of the newborn tissue was inhibited by approximately 45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that nonmuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 +/- 0.07, 5.77 +/- 0.08, and 5.55 +/- 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase-induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders.  相似文献   

13.
The purpose of this study was to test the hypothesis that the phosphorylation of myosin is solely responsible for the activation of the Mg2+-ATPase activity of gizzard actomyosin. Using a washed natural actomyosin and a reconstituted actomyosin it was shown that phosphorylation alone caused only a slight activation of ATPase activity. Full activity was obtained only when proteins in addition to the myosin light chain kinase were added. It is evident from these results that: 1) there is no simple relationship between the extent of myosin phosphorylation and the specific Mg2+-ATPase activity of actomyosin and 2) in order for full activation by actin of the Mg2+-ATPase activity of phosphorylated myosin additional factors are required.  相似文献   

14.
    
Phosphorylation of the myosin regulatory light chain (RLC) by Ca(2+)-calmodulin-activated myosin light chain kinase (MLCK) is known to be essential for the inotropic function of the heart. In this study, we have examined the effects of MLCK-phosphorylation of transgenic (Tg) mouse cardiac muscle preparations expressing the D166V (aspartic acid to valine)-RLC mutation, identified to cause familial hypertrophic cardiomyopathy with malignant outcomes. Our previous work with Tg-D166V mice demonstrated a large increase in the Ca(2+) sensitivity of contraction, reduced maximal ATPase and force and a decreased level of endogenous RLC phosphorylation. Based on studies demonstrating the beneficial and/or protective effects of cardiac myosin phosphorylation for heart function, we hypothesized that an ex vivo phosphorylation of Tg-D166V cardiac muscle may rescue the detrimental contractile phenotypes observed earlier at the level of single myosin molecules and in Tg-D166V papillary muscle fibres. We showed that MLCK-induced phosphorylation of Tg-D166V cardiac myofibrils and muscle fibres was able to increase the reduced myofibrillar ATPase and reverse an abnormally increased Ca(2+) sensitivity of force to the level observed for Tg-wild-type (WT) muscle. However, in contrast to Tg-WT, which displayed a phosphorylation-induced increase in steady-state force, the maximal tension in Tg-D166V papillary muscle fibres decreased upon phosphorylation. With the exception of force generation data, our results support the notion that RLC phosphorylation works as a rescue mechanism alleviating detrimental functional effects of a disease causing mutation. Further studies are necessary to elucidate the mechanism of this unexpected phosphorylation-induced decrease in maximal tension in Tg-D166V-skinned muscle fibres.  相似文献   

15.
Myosin light chain kinase (MLCK) and the kinase-related protein (KRP), also known as telokin, are the major independent protein products of the smooth muscle/non-muscle MLCK genetic locus. They share a common C-terminal part and major sites phosphorylated in vivo. Whereas MLCK is critically involved in myosin activation and contraction initiation in smooth muscle, KRP is thought to antagonize MLCK and to exert relaxation activity. Phosphorylation controls the MLCK and KRP activities. We generated two phosphorylation and site-specific antibodies to individually monitor levels of MLCK and KRP phosphorylation on critical sites. We quantified the level of KRP phosphorylation in smooth muscle before and after an increase in intracellular free Ca2+ and stimulation of adenylate cyclase, protein kinase C, and mitogen-activated protein kinases (MAP-kinases). Forskolin and phorbol-12,13-dibutyrate increased KRP phosphorylation at Ser13 from 25 to 100% but did not produce contraction in rat ileum. The level of Ser13 phosphorylation was not altered during Ca2+-dependent contraction evoked by KCl depolarization or carbachol, but subsequently increased to maximum during forskolin-induced relaxation. These data suggest that several intracellular signaling pathways control phosphorylation of KRP on Ser13 in smooth muscle and thus may contribute to relaxation. In contrast, phosphorylation level of Ser19 of KRP increased only slightly (from 30 to 40-45%) and only in response to MAP-kinase activation, arguing against its regulatory function in smooth muscle.  相似文献   

16.
为了阐明非磷酸化肌球蛋白在平滑肌细胞迁移中的作用,研究探讨了非磷酸化肌球蛋白是否介导了血小板衍生生长因子(PDGF)诱导豚鼠脑基底动脉平滑肌细胞(GbaSM-4)的迁移。研究结果显示,20ng/ml以下剂量的PDGF可诱导GbaSM-4细胞发生迁移,此时肌球蛋白轻链(MLC20)磷酸化水平无变化。该迁移作用可被肌球蛋白特异性抑制剂blebbistatin所拮抗。应用RNA干扰技术抑制肌球蛋白轻链激酶表达,经免疫印迹检测经果显示,MLC20的磷酸化水平发生了显著下降;但对PDGF诱导的迁移作用无影响;在RNA干扰后blebbistatin也可抑制其迁移作用。体外ATP酶活性测定结果显示,blebbistatin对从平滑肌中提取的非磷酸化肌球蛋白的ATP酶活性有明显的抑制作用,其主要作用位点位于肌球蛋白头的头部S1。上述结果提示,非磷酸化的肌球蛋白参与了PDGF诱导的平滑肌细胞迁移。  相似文献   

17.
18.
Evidence is presented for Ca2+ and cyclic GMP being involved in signal transduction between the cell surface cyclic AMP receptors and cytoskeletal myosin II involved in chemotactic cell movement. Ca2+ is shown to be required for chemotactic aggregation of amoebae. The evidence for uptake and/or eflux of this ion being regulated by the nucleotide cyclic GMP is discussed. The connection between Ca2+, cyclic GMP and chemotactic cell movement has been explored using “streamer F” mutants. The primary defect in these mutants is in the structural gene for the cyclic GMP-specific phosphodiesterase which results in the mutants producing an abnormally prolonged peak of accumulation of cyclic GMP in response to stimulation with the chernoattractant cyclic AMP. While events associated with production and relay of cyclic AMP signals are normal, certain events associated with movement are (like the cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and inhibition of myosin heavy and light chain phosphorylation. These changes can be correlated with the amoebae becoming elongated and transiently decreasing their locomotive speed after chemotactic stimulation. Other mutants studied in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent produced no myosin II responses. Models are described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by inhibiting phosphorylation of the myosin heavy and light chain kinases.  相似文献   

19.
20.
Studies on primary astrocytes cultured in vitro have shown that process formation involves changes in cytoskeletal proteins and release of tension on the substratum. Actin filament reorganization has previously been found to be the major cytoskeletal change occurring during process formation. These changes are relatively rapid with breakdown of the actin web and release of contacts occur within 15 min. of cyclic AMP treatment. The former is regulated by myosin light chain (MLC) and actin depolymerizing factor (ADF), with MLC involved in the initial release of contractile tension and ADF in both initial and longer term actin breakdown. Our results show that the dephosphorylation of MLC is due to the phosphorylation and inactivation of myosin light chain kinase (MLCK) in response to cyclic AMP. To further study the mechanisms underlying the process formation in astrocytes we used endothelin-1 (ET-1), a vasopeptide which has been shown to inhibit process formation in astrocytes and sodium fluoride which is a general phosphatase inhibitor. We observe an increase in phosphorylation of MLC on inhibition of process formation. To study the role of adhesion in process formation we used suspension cultures of astrocytes. Our results with the astrocytes in suspension suggest that the process formation in astrocytes is adhesion dependent and the changes in ADF and MLC occur only when there is process formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号