共查询到20条相似文献,搜索用时 0 毫秒
1.
Polycomb complexes and epigenetic states 总被引:18,自引:0,他引:18
Important advances in the study of Polycomb Group (PcG) complexes in the past two years have focused on the role of this repressive system in programing the genome. Genome-wide analyses have shown that PcG mechanisms control a large number of genes regulating many cellular functions and all developmental pathways. Current evidence shows that, contrary to the classical picture of their role, PcG complexes do not set a repressed chromatin state that is maintained throughout development but have a much more dynamic role. PcG target genes can become repressed or be reactivated or exist in intermediate states. What controls the balance between repression and derepression is a crucial question in understanding development and differentiation in higher organisms. 相似文献
2.
Polycomb complexes and silencing mechanisms 总被引:15,自引:0,他引:15
Advances in the past couple of years have brought important new knowledge on the mechanisms by which Polycomb-group proteins regulate gene expression and on the consequences of their actions. The discovery of histone methylation imprints specific for Polycomb and Trithorax complexes has provided mechanistic insight on how this ancient epigenetic memory system acts to repress and indicates that it may share mechanistic aspects with other silencing and genome-protective processes, such as RNA interference. 相似文献
3.
4.
Polycomb complexes assemble at their target sites and silence neighboring genes when these are not actively transcribed. The action of these complexes and of Trithorax complexes bound to the Polycomb Response Element establish alternative silent or derepressed states that are remembered through cell division and maintained for the rest of development. Recent results that may help explain the properties of these states are reviewed. 相似文献
5.
6.
7.
8.
Stem cells are unique cell populations identified in a variety of normal tissues and some cancers. Maintenance of stem cell pools is essential for normal development, tissue homeostasis, and tumorigenesis. Recent studies have revealed that Polycomb repressive complexes (PRCs) play a central role in maintaining stem cells by repressing cellular senescence and differentiation. Here, we will review recent findings on dynamic composition of PRC complexes and sub-complexes, how PRCs are recruited to chromatin, and their functional roles in maintaining self-renewal of stem cells. Furthermore, we will discuss how PRCs, CpG islands (CGIs), the INK4A/ARF/INK4B locus, and developmental genes form a hierarchical regulatory axis that is utilized by a variety of stem cells to maintain their self-renewal and identities. 相似文献
9.
10.
Similar to mammalian neural progenitors, Drosophila neuroblasts progressively lose competence to make early-born neurons. In neuroblast 7-1 (NB7-1), Kruppel (Kr) specifies the third-born U3 motoneuron and Kr misexpression induces ectopic U3 cells. However, competence to generate U3 cells is limited to early divisions, when the Eve(+) U motoneurons are produced, and competence is lost when NB7-1 transitions to making interneurons. We have found that Polycomb repressor complexes (PRCs) are necessary and sufficient to restrict competence in NB7-1. PRC loss of function extends the ability of Kr to induce U3 fates and PRC gain of function causes precocious loss of competence to make motoneurons. PRCs also restrict competence to make HB9(+) Islet(+) motoneurons in another neuroblast that undergoes a motoneuron-to-interneuron transition, NB3-1. In contrast to the regulation of motoneuron competence, PRC activity does not affect the production of Eve(+) interneurons by NB3-3, HB9(+) Islet(+) interneurons by NB7-3, or Dbx(+) interneurons by multiple neuroblasts. These findings support a model in which PRCs establish motoneuron-specific competence windows in neuroblasts that transition from motoneuron to interneuron production. 相似文献
11.
12.
Marie-Josèphe Giraud-Panis Sabrina Pisano Anaïs Poulet Eric Gilson 《FEBS letters》2010,584(17):3785-20415
A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. Although several nucleoprotein complexes have been described at the telomeres of different organisms, it is still unclear how they confer a structural identity to chromosome ends in order to mask them from DNA repair and to ensure their proper replication. In this review, we describe how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guaranty the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We propose that telomeric nucleoprotein complexes orient cell fate through dynamic transitions in their structures and their organization. 相似文献
13.
Takada Y Isono K Shinga J Turner JM Kitamura H Ohara O Watanabe G Singh PB Kamijo T Jenuwein T Burgoyne PS Koseki H 《Development (Cambridge, England)》2007,134(3):579-590
The product of the Scmh1 gene, a mammalian homolog of Drosophila Sex comb on midleg, is a constituent of the mammalian Polycomb repressive complexes 1 (Prc1). We have identified Scmh1 as an indispensable component of the Prc1. During progression through pachytene, Scmh1 was shown to be excluded from the XY body at late pachytene, together with other Prc1 components such as Phc1, Phc2, Rnf110 (Pcgf2), Bmi1 and Cbx2. We have identified the role of Scmh1 in mediating the survival of late pachytene spermatocytes. Apoptotic elimination of Scmh1(-/-) spermatocytes is accompanied by the preceding failure of several specific chromatin modifications at the XY body, whereas synapsis of homologous autosomes is not affected. It is therefore suggested that Scmh1 is involved in regulating the sequential changes in chromatin modifications at the XY chromatin domain of the pachytene spermatocytes. Restoration of defects in Scmh1(-/-) spermatocytes by Phc2 mutation indicates that Scmh1 exerts its molecular functions via its interaction with Prc1. Therefore, for the first time, we are able to indicate a functional involvement of Prc1 during the meiotic prophase of male germ cells and a regulatory role of Scmh1 for Prc1, which involves sex chromosomes. 相似文献
14.
15.
16.
17.
In both mammals and plants, Polycomb Repressive Complexes 2 (PRC2) are conserved and appear to be involved in the transition between vegetative or somatic and reproductive state in plants and mammals. In plants at least three different PRC2 control temporal aspects of development, and mutations in PcG cause heterochronies. Such heterochronic mutations affect the transition to flowering. During gametogenesis the Fertilization-Independent Endosperm-MEDEA-PRC2 (FIE-MEA PRC2) complex controls gametogenesis in synergy with a Retinoblastoma-dependent pathway. Several genes of the FIE-MEA pathway are imprinted as shown by their uniparental allele expression in the endosperm, the interface controlling maternal nutrition of the embryo in the seed. Imprinting is also a major feature for genes expressed in the placenta in mammals. Recent data have shown that imprinting in both placenta and endosperm likely share similar mechanisms involving cooperation between the PRC2 complexes and DNA methylation. 相似文献
18.
19.
Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, which might be reflected in their phylogenetic trees by concordant episodes of positive selection and by a correlation in evolutionary rates. In order to detect these signals of coevolution, the molecular evolution of 17 genes encoding the subunits of five Polycomb repressive complexes has been analyzed in the Drosophila genus. The observed distribution of divergence differs substantially among and along proteins. Indeed, CAF1 is uniformly conserved, whereas only the established protein domains are conserved in other proteins, such as PHO, PHOL, PSC, PH-P and ASX. Moreover, regions with a low divergence not yet described as protein domains are present, for instance, in SFMBT and SU(Z)12. Maximum likelihood methods indicate an acceleration in the nonsynonymous substitution rate at the lineage ancestral to the obscura group species in most genes encoding subunits of the Pcl–PRC2 complex and in genes Sfmbt, Psc and Kdm2. These methods also allow inferring the action of positive selection in this lineage at genes E(z) and Sfmbt. Finally, the protein interaction network predicted from the complete proteomes of 12 Drosophila species using a coevolutionary approach shows two tight PcG clusters. These clusters include well-established binary interactions among PcG proteins as well as new putative interactions. 相似文献
20.
Meena Shrivastav Cheryl A. Miller Leyma P. De Haro Stephen T. Durant Benjamin P.C. Chen David J. Chen Jac A. Nickoloff 《DNA Repair》2009,8(8):920-929
DNA double-strand breaks (DSBs) are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR). The NHEJ/HR decision is under complex regulation and involves DNA-dependent protein kinase (DNA-PKcs). HR is elevated in DNA-PKcs null cells, but suppressed by DNA-PKcs kinase inhibitors, suggesting that kinase-inactive DNA-PKcs (DNA-PKcs-KR) would suppress HR. Here we use a direct repeat assay to monitor HR repair of DSBs induced by I-SceI nuclease. Surprisingly, DSB-induced HR in DNA-PKcs-KR cells was 2- to 3-fold above the elevated HR level of DNA-PKcs null cells, and ~4- to 7-fold above cells expressing wild-type DNA-PKcs. The hyperrecombination in DNA-PKcs-KR cells compared to DNA-PKcs null cells was also apparent as increased resistance to DNA crosslinks induced by mitomycin C. ATM phosphorylates many HR proteins, and ATM is expressed at a low level in cells lacking DNA-PKcs, but restored to wild-type level in cells expressing DNA-PKcs-KR. Several clusters of phosphorylation sites in DNA-PKcs, including the T2609 cluster, which is phosphorylated by DNA-PKcs and ATM, regulate access of repair factors to broken ends. Our results indicate that ATM-dependent phosphorylation of DNA-PKcs-KR contributes to the hyperrecombination phenotype. Interestingly, DNA-PKcs null cells showed more persistent ionizing radiation-induced RAD51 foci (but lower HR levels) compared to DNA-PKcs-KR cells, consistent with HR completion requiring RAD51 turnover. ATM may promote RAD51 turnover, suggesting a second (not mutually exclusive) mechanism by which restored ATM contributes to hyperrecombination in DNA-PKcs-KR cells. We propose a model in which DNA-PKcs and ATM coordinately regulate DSB repair by NHEJ and HR. 相似文献