首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As old-growth forests are converted into edge-affected habitats, a substantial proportion of tropical biodiversity is potentially threatened. Here, we examine a comprehensive set of community-level attributes of fruit-feeding butterfly assemblages inhabiting edge-affected habitats in a fragmented Atlantic forest landscape devoted to sugar cane production. We also explored whether the consequences of habitat loss and fragmentation can interact and cause cascading ecosystem changes, with the pervasive simplification of tree assemblages inhabiting edge-dominated habitats, altering fruit-feeding butterfly persistence. Butterflies were sampled in three forest habitats: small fragments, forest edges and patches of forest interior of a primary forest fragment. Assemblage attributes, including taxonomic composition, correlated to some patch (patch size) and landscape (such as forest cover) metrics as well as habitat structure (tree density and richness). Fruit-feeding butterfly assemblages in the forest interior differed from those in small fragments due to an increased abundance of edge-specialist species. On the other hand, several forest-dependent species were missing in both small fragments and forest edges. Our results suggest that edge-affected habitats dominated by pioneer tree species support taxonomically distinct assemblages, including the presence of disturbance-adapted species, and butterfly community structure is highly sensitive to fragmentation- and plant-related variables, such as forest cover and pioneer tree species. In this way, while the establishment of human-modified landscapes probably results in the local extirpation of forest-dependent species, it allows the persistence of disturbance-adapted species. Thus, forest-dependent species conservation and the plant–animal interaction webs they support could be improved by retaining a significant amount of core forest habitat.  相似文献   

2.
Abstract The conservation of biodiversity is dependent on protecting ecosystem‐level processes. We investigated the effects of fragment size and habitat edge on the relative functioning of three ecological processes – decomposition, predation and regeneration of trees – in small Afromontane forests in KwaZulu‐Natal, South Africa. Ten sampling stations were placed in each of four forest categories: the interior of three large indigenous forest fragments (100 m from the edge), the edges of these large fragments, 10 small indigenous fragments (<1 ha) and 10 small exotic woodlands (<0.5 ha). Fragment size and edge effects did not affect the abundance of the amphipod Talitriator africana, a litter decomposer, and overall dung beetle abundance and species richness significantly. Bird egg predation was marginally greater at large patch edges compared with the other forest categories, while seed predation did not differ among forest categories. Tree seedling assemblage composition did not differ significantly among large patch interiors and edges, and small indigenous fragments. Sapling and canopy assemblage composition each differed significantly among these three indigenous forest categories. Thus, while tree recruitment was not negatively affected by patch size or distance from the edge, conditions in small fragments and at edges appear to affect the composition of advanced tree regeneration. These ecological processes in Afromontane forests appear to be resilient to fragmentation effects. We speculate that this is because the organisms in these forests have evolved under fragmented conditions. Repeated extreme changes in climate and vegetation over the Pleistocene have acted as significant distribution and ecological extinction filters on these southern hemisphere forest biota, resulting in fauna and flora that are potentially resilient to contemporary fragmentation effects. We argue that because small patches and habitat edges appear to be ecologically viable they should be included in future conservation decisions.  相似文献   

3.
Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta‐analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower‐latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher‐temperate latitudes generally replaced late‐successional specialists with early‐successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta‐analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.  相似文献   

4.
伊朗稀疏橡木林片段对草本植物物种多样性和土壤特性的边缘影响 温带和热带森林中的森林边缘现象已经得到了很好的研究,但在稀疏的橡木林片段中的相关研究却较为缺乏。本文研究了稀疏橡木林片段对植物物种多样性和土壤特性的边缘影响。本研究沿着伊朗克尔曼沙赫省3个小型(<10 ha)和3个大型(>10 ha)橡木林片段的3个横断面收集了从边缘到内部的相 关数据,测量了0(森林边缘)、25、50、100和150 m处的草本植物(高度<0.5 m)和土壤特性。使用香农指数量化了物种多样性,使用稀疏标准化方法比较了两个大小不同片段中的物种丰富度,并应用了非度量多维测度排序研究了物种组成的变化。通过随机化测试估算了边缘影响的距离,并利用Tukey HSD事后检验法的广义线性混合模型评估了距边缘距离和片段大小对多样性和土壤特性的影响。研究结果表明,大小片段边缘具有较高的物种丰富度、多样性和均匀度,而大片段边缘的土壤氮和有机碳含量则较内部更低(边缘50 m范围内的变化最大)。大小片段的物种组成、土壤有机碳和氮总量都存在显 著差异。本研究关于这些稀疏森林对草本植物和土壤特性产生显著边缘影响的发现,对于边缘研究,尤其是边缘和草本植物的相关研究具有重大贡献。  相似文献   

5.
In agricultural landscapes in central Europe, species richness of the herbaceous plant community may be compromised by processes associated with forest fragmentation, habitat loss, and management practices. We examined variability in species richness and composition of the herbaceous layer in 229 plots located in 23 forest fragments (0.1 to 255 ha), in a representative upland agricultural landscape in central Bohemia, in relation to the most important site environmental factors, edge effects, and site history. The influence of environmental factors on the composition of vegetation in the herb layer was evaluated using generalized additive models, which enabled us to analyze highly non-linear and non-monotonic relationships. Total species richness and number of red-listed and ancient forest species were significantly influenced by type of forest vegetation, light quality, soil pH, slope aspect, and distance from the forest edge. Implications of the significant explanatory variables corresponded well to previous findings, with the exception of distance from the forest edge, for which we found a positive relationship with species richness for distances up to 200 m toward the forest interior. Plant species with low colonization ability occupied plots with increasing frequency from edge to forest interior, while fast-colonizing species showed the opposite trend. Apart from the edge effect, forest continuity should be considered for its important contribution to the richness of ancient forest and red-listed species, whereas the effect of forest fragment size appeared to be generally weak. These results do not negate the importance of large forest fragments for the maintenance of herb layer species richness, but specifically emphasize the essential contribution of the core habitats of these forests. In summary, we showed that the negative effects of habitat fragmentation on the richness of ancient forest and red-listed species and on herb layer species in total can be largely attributed to either the edge effect itself or to aggregate effects of forest edge and forest continuity.  相似文献   

6.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

7.
Edge effects are among the primary mechanisms by which forest fragmentation can influence the link between biodiversity and ecosystem processes, but relatively few studies have quantified these mechanisms in temperate regions. Carbon storage is an important ecosystem function altered by edge effects, with implications for climate change mitigation. Two opposing hypotheses suggest that aboveground carbon (AGC) stocks at the forest edge will (a) decrease due to increased tree mortality and compositional shifts towards smaller, lower wood density species (e.g., as seen in tropical systems) or, less often, (b) increase due to light/temperature-induced increases in diversity and productivity. We used field-based measurements, allometry, and mixed models to investigate the effects of proximity to the forest edge on AGC stocks, species richness, and community composition in 24 forest fragments in southern Quebec. We also asked whether fragment size or connectivity with surrounding forests altered these edge effects. AGC stocks remained constant across a 100 m edge-to-interior gradient in all fragment types, despite changes in tree community composition and stem density consistent with expectations of forest edge effects. We attribute this constancy primarily to compensatory effects of small trees at the forest edge; however, it is due in some cases to the retention of large trees at forest edges, likely a result of forest management. Our results suggest important differences between temperate and tropical fragments with respect to mechanisms linking biodiversity and AGC dynamics. Small temperate forest fragments may be valuable in conservation efforts based on maintaining biodiversity and multiple ecosystem services.  相似文献   

8.
Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits) and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems) in 10 fragments and 10 tracts of forest interior (control plots). As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated). The most conspicuous differences were the lack of three pollination systems in fragments--pollination by birds, flies and non-flying mammals--and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores) for pollination systems (-30.3%), floral types (-23.6%), and floral sizes (-20.8%) in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and greatly reduces the functional diversity of tree assemblages in fragmented landscapes.  相似文献   

9.
Forest patches with high biological value are protected as woodland key habitats (WKH), which are identified by the presence of forest structures and indicator species. However, management for conservation needs to consider also managed forests as habitats for species. In this respect, there is a need to set quantitative targets for species and structures at different landscape scales. Due to non-intensive methods of forest management used prior to 1940 in Latvia, it might be expected that large areas of forest have developed structures that can support many species characteristic of natural forests. The aim of the study was to create a model that best described the richness of bryophyte species that are characteristic of natural forests, using forest structures as explanatory factors. The structures and bryophyte communities on living trees and coarse woody debris (CWD) were described in plots along transects blindly placed in areas dominated by State forests under commercial management. Explanatory variables related to tree species composition and tree size explained 54% of the variation in WKH indicator species richness on living trees. The best explanatory factors were maximum diameter of deciduous tree species and CWD. Low richness of total bryophyte and indicator species was found on dead wood, and the amount of variation in bryophyte species richness on CWD explained by explanatory variables was low. The study indicates the importance of deciduous tree substrate in managed forests in maintaining the spatial continuity of epiphytic species diversity. However, the forests in the managed forest landscape did not support high diversity of epixylic species, even in the WKHs, due to low diversity of suitable dead wood substrate.  相似文献   

10.
Aim Working within a system of high structural contrast between fragments and the surrounding matrix, we assessed patterns of species loss and changes in species composition of phyllostomid bats on artificial land‐bridge islands relative to mainland assemblages, and evaluated the responses of bats to forest edges. We further examined the relative influence of local‐scale characteristics (e.g. vegetation structure, island area) versus landscape attributes (e.g. forest cover, patch density) and the importance of spatial scale in determining phyllostomid species richness and composition on islands. Location Islands in Gatún Lake and adjacent mainland peninsulas in the Barro Colorado Nature Monument, Panama. Methods Bats were sampled over a 2‐year period on 11 islands as well as at forest‐edge and interior sites on adjacent mainland, resulting in > 8400 captures. Results The islands harboured a less diverse and structurally simplified phyllostomid bat fauna. Islands far from the mainland were especially species‐poor. This decline in species richness was associated with compositional shifts towards assemblages strongly dominated by frugivores with good dispersal abilities. Members of other ensembles, most importantly gleaning animalivores, were much less common or absent. Although overall species composition was not significantly altered, species richness at continuous forest‐edge sites was significantly lower compared with that at interior sites. Distance from the mainland and amount of forest cover in the landscape were the best predictors of species richness and assemblage composition. Responses were scale‐dependent. At the local scale, species richness was independent of island area but was correlated positively with distance from the mainland. In contrast, area effects became more important at larger spatial scales, suggesting that many species use multiple fragments. Main conclusions Our results underline the conservation value of small habitat remnants, which, even when embedded in a hostile matrix, can support a relatively diverse bat fauna, provided that there is a low degree of patch isolation and spatial proximity to larger tracts of continuous forest. Although the results at the assemblage level were inconclusive, we demonstrate that certain bat species and ensembles, particularly gleaning animalivores, exhibit high edge‐sensitivity. Our results point to habitat loss rather than changes in landscape configuration as the main process after isolation underlying phyllostomid bat responses, suggesting that conservation efforts should focus on habitat preservation instead of trying to minimize fragmentation per se at the expense of habitat amount.  相似文献   

11.
In this study, we compared ground-dwelling beetle assemblages (Coleoptera) from a range of different oak fragments and surrounding conifer plantations to evaluate effects of forest size and surrounding matrix habitat in a temperate forest of north China. During 2000, beetles were sampled via pitfall traps within two large oak fragments (ca. 2.0-4.0 ha), two small oak fragments (ca. 0.2-0.4 ha) and two surrounding matrices dom- inated by pine plantations (〉4 ha) in two sites of different aspects. Overall, no significantly negative effects from forest patch size and the surrounding matrix habitat were detected in total species number and abundance of ground-dwelling beetles. However, compared with small oak patches or pine plantations, more species were associated with an affinity for at least one large oak patch of the two aspects. Multivariate regression trees showed that the habitat type better determined the beetle assemblage structure than patch size and aspect, indicating a strong impact of the surrounding matrix. Linear mixed models indicated that species richness and abundance of all ground-dwelling beetles or beetle families showed different responses to the selected environmental variables. Our results suggest that more disturbed sites are significantly poorer in oak forest specialists, which are usually more abundant in large oak fragments and decrease in abundance or disappear in small fragments and surrounding matrix habitats. Thus, it is necessary to preserve a minimum size of forest patch to create conditions characteristic for forest interior, rather than the more difficult task of increasing habitat connectivity.  相似文献   

12.
The introduced tree species Spathodea campanulata (Bignoniaceae) forms novel forests in Puerto Rico, these having emerged after the abandonment of fields in the mid‐20th century and resulting in forests with a new species composition. We assessed bryophyte species richness in these novel forests and sought correlations with geological substrate, past land use, forest edge and patch area, forest structure, elevation, microhabitat diversity, tree species richness, and microclimatic conditions. Transects were established (edge and forest interior) in nine moist forest patches dominated by Spathodea in north‐central Puerto Rico. These Spathodea forest patches ranged from 0.6 to 9 ha. ANOVA, Chi‐square, correlation, and cluster analyses were used in data analyses. We found 57 bryophyte species. There was a significant difference in bryophyte richness among patches. Those on karst exhibited highest bryophyte richness due to microhabitat diversity, past land use, and shorter hydroperiods. Alluvial sites scored lowest in bryophyte species richness, and forest structure was important for bryophyte communities on these sites. Significant differences in temperature, relative humidity, and light intensity were observed between edge and forest interior. These appeared important for establishing bryophyte species cover but not richness and composition. Microhabitat diversity, patch area, and forest age were more related to bryophyte species richness than elevation, exposed edge, and tree species richness, regardless of geologic substrate. Collectively, Spathodea patches were similar to mature forests on the Island with respect to bryophyte species richness and composition. Novel Spathodea forests have conservation value due to their habitat suitability for bryophyte communities.  相似文献   

13.
The Chaco is the largest dry forest biome in South America and one of the regions most threatened by agricultural intensification. As a consequence, in several areas Chaco forests persist as forest remnants of different sizes embedded in an agricultural matrix. Ants are social insects that have key roles in ecosystem functioning, and the effects of this ongoing land use change process on ant communities are little known for this region. In the present study, we assessed the consequences of land use replacement by monocultures and forest fragmentation on ant communities. Particularly, we assessed whether patch size, patch isolation and edge effect affect species richness and composition of ground‐dwelling ants in fragmented landscapes of Chaco forests. We collected ants by combining hand collecting and pitfall traps in 17 forest fragments and the surrounding matrix from two sites in Córdoba, Argentina. Patch size and patch isolation had no effect on ant richness; however, patch isolation and, to a lesser extent, patch size altered ant species composition. The ant community was not affected by edge but it was negatively affected by the crop matrix, which reduced richness and altered species composition. These results indicate that monoculture matrices severely affect ant communities in the Chaco forests, and that the effects of other indicators of habitat fragmentation (patch size and edge effect) are subtler and less relevant. In the present context of land use change, even small fragments could have an important value for the conservation of ant diversity.  相似文献   

14.
Habitat fragmentation modifies ecological patterns and processes through changes in species richness and abundance. In the coastal Maulino forest, central Chile, both species richness and abundance of insectivorous birds increases in forest fragments compared to continuous forest. Through a field experiment, we examined larvae predation in fragmented forests. Higher richness and abundance of birds foraging at forest fragments translated into more insect larvae preyed upon in forest fragments than in continuous forest. The assessed level of insectivory in forest fragments agrees with lower herbivory levels in forest fragments. This pattern strongly suggests the strengthening of food interactions web in forest fragments of coastal Maulino forest.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
Background: Habitat loss and fragmentation have been argued to drastically alter the composition of tree assemblages inhabiting small forest fragments but the successional trajectory experienced by such edge-affected habitats remains controversial.

Aims: Here we examine whether small fragments (3.4–91.2 ha) support seedling assemblages more similar to those in 10–70-year-old secondary forests than to those in mature forests, in order to infer to what extent fragments move toward early successional systems.

Methods: Using 59 0.1-ha plots distributed in a fragmented landscape of Brazilian Atlantic forest, we evaluated species richness and functional and taxonomic composition of seedling assemblages in 20 small forest fragments, 19 stands of secondary forest and 20 stands of mature forests in the interior of an exceptionally large fragment (ca. 3500 ha).

Results: Small fragments presented the least species-rich seedling assemblages (17.2 ± 5.7 species), followed by secondary (22.5 ± 5.3), and mature forest (28.4 ± 5.3). Small fragments had seedling assemblages with functional and taxonomic composition more similar to those in secondary than in mature forest. Small fragments had a greater relative richness and abundance of pioneer trees (ca. 40% more), vertebrate-dispersed (6–25%), and those bearing medium-sized seeds (30–70%), while large-seeded species and individuals were reduced (>50% decrement) in comparison to seedling assemblages in mature forest.

Conclusions: By comparing seedlings across a wide range of successional habitats we offer evidence that small forest fragments are experiencing an alternative successional pathway towards an early-successional system with reduced plant diversity.  相似文献   

16.
Habitat fragmentation is recognized as one of the main factors associated with species extinction and is particularly acute in South American forest habitats. In this study, we examined the effects of forest fragmentation on the beetle assemblage at the relict temperate forest of Fray Jorge (Chile). We evaluated the following hypotheses: (1) there is a strong edge effect, so that the number of beetle species and individuals increases away from the edge, towards the inner part of each fragment, (2) this pattern should be apparent in the larger fragments but not in the smaller ones, where edge effects are expected to be stronger, and (3) there should be a significant interaction between number of species/individuals found inside and outside fragments (i.e., in the matrix) and season, because of an increase in aridity and water stress during austral summer months. We found that the relationship between the number of individuals and number of species vs distance from the matrix towards the forest interior was affected by fragment size and season. In general, both number of species and individuals tended to increase from the matrix towards the forest edge and then either decrease, increase or maintain a constant level, depending on fragment size and season. The result of an ANOVA analysis, which used season, size, and position (inside vs outside fragments) as factors and number of individuals as the response variable, showed a significant effect of fragment size, position, and season and a significant interaction between fragment size and season, season and position, and size and position. ANOVA analysis using number of species as the response variable showed that area, season, and position all had significant effects. The results also showed a significant interaction between size and season and between season and position. Our results emphasize the existence of strong fragment-size and seasonal effects modulating both the response of beetles to fragmentation and their abundance and distribution in temperate areas. Thus, seasonal dynamic effects can be of paramount importance to demonstrate and understand the effect of habitat fragmentation upon arthropod assemblages in temperate areas.  相似文献   

17.
Habitat fragmentation has become one of the major threats to biodiversity worldwide, particularly in the case of forests, which have suffered enormous losses during the past decades. We analyzed how changes in patch configuration and habitat quality derived from the fragmentation of austral temperate rainforests affect the distribution of six species of forest-dwelling climbing and epiphytic angiosperms. Epiphyte and vine abundance is primarily affected by the internal characteristics of patches (such as tree size, the presence of logging gaps or the proximity to patch edges) rather than patch and landscape features (such as patch size, shape or connectivity). These responses were intimately related to species-specific characteristics such as drought- or shade-tolerance. Our study therefore suggests that plant responses to fragmentation are contingent on both the species'' ecology and the specific pathways through which the study area is being fragmented, (i.e. extensive logging that shaped the boundaries of current forest patches plus recent, unregulated logging that creates gaps within patches). Management practices in fragmented landscapes should therefore consider habitat quality within patches together with other spatial attributes at landscape or patch scales.  相似文献   

18.
Fragmentation of the forested landscape poses a threat to many aspects of biodiversity associated with old-growth forests Studies of the effects of forest fragmentation are often complicated by the variation in composition and age of patches and the matrix This study used a system of isolated stands where patch age and composition were similar and the matrix variability negligible The patches were composed of old-growth Picea abies stands of varying size and shape in a wetland matrix The study organisms were epiphytic crustose calicioid lichens (also known as Caliciales), many of which are very substrate-specific and restricted to old-growth stands The aim of the study was to measure the effect of patch size, patch isolation, habitat and substrate quality on the species riochness and composition of epiphytic calicioids Twenty-four patches ranging from 0 4 to 15 9 ha in size were studied All species of calicioid lichens were registered in 0 1 ha plots in each patch Isolation was measured as the percentage of available habitat within 400 m of a patch Twenty-two species were found with an average of 9 48 ± 0 26 (SE) species per patch and 292 ± 0 18 (SE) species per tree Species richness at patch level correlated with stand structure, primarily tree density, while number of species per tree (reflecting population size) was strongly correlated with island size and several stand variables There was no effect of isolation on species richness Species composition was influenced by both substrate variables and patch size The species composition on the islands showed a significant nestedness, i e species composition on species-poor islands constituted a non-random subset of the species composition on species-rich islands We propose that the explanation for the strong relationship between species richness at tree level and stand size is an edge effect which implies that unaffected interior areas only occur on large islands The different microclimate of the patch edge enables only the hardiest species to establish large populations there whilst shade and moisture demanding species are restricted to the interiors of larger islands  相似文献   

19.
Aim  We aim to assess the impact of forest fragmentation on lepidopteran larval community and study the associations of microclimate and tree community with lepidopteran assemblage.
Location  Kibale National Park, Uganda.
Methods  We investigated the effects of forest fragmentation on leaf herbivory, density of lepidopteran caterpillars, species richness and diversity as well as the composition of herbivorous lepidopteran larval community. Microclimate, size of the fragment, distance to the continuous forest, and tree diversity were studied as possible explanatory factors. We sampled 10 Neoboutonia macrocalyx Pax. (Euphorbiaceae) trees in each fragment during dry and rainy season, total of four times, in a year to cover the seasonal variation.
Results  The rates of herbivory, total larval density and species richness were significantly lower in the forest fragments than in the continuous forest but species diversity expressed as Fisher's alpha did not differ. The dominance structure and community composition of the larval communities in the fragments was different from that of the continuous forest. None of the differences we observed were related to the fragment area or distance to the continuous forest. Instead, we found an indication of association between the herbivore and the tree communities. The fragments had significantly lower humidity during most of the day and higher temperature during the afternoons (14–17 h), which might partially explain the differences in lepidopteran larval communities.
Main conclusions  Decreased larval density and species richness as well as differences in the community composition and structure all highlight the importance of large continuous forest areas for maintaining larval biodiversity.  相似文献   

20.
Reduced-impact logging (RIL) is known to be beneficial in biodiversity conservation, but its effects on tree diversity remain unknown. Pattern of tree diversity following disturbance usually varies with spatial scale of sampling (i.e., plot size). We examined the impacts of RIL on species richness and community composition of tree species at different spatial scales, and the scale (plot size) dependency of the two metrics; species richness versus community similarity. One 2-ha and three to four 0.2-ha plots were established in each of primary, RIL, and conventionally logged (CL) forest in Sabah, Malaysia. Species richness (the number of species per unit number of stems) was higher in the RIL than in the CL forest at both scales. The relationship between species richness and logging intensity varied with plot size. Species richness was greater in the RIL than in the primary forest at the 2-ha scale, while it was similar between the two forests at 0.2-ha scale. Similarly, species richness in the CL forest demonstrated a greater value at the 2-ha scale than at the 0.2-ha scale. Greater species richness in the two logged forests at the 2-ha scale is attributable to a greater probability of encountering the species-rich, small patches that are distributed heterogeneously. Community composition of the RIL forest more resembled that of the primary forest than that of the CL forest, regardless of plot size. Accordingly, species richness is a scale-dependent metric, while community similarity is a more robust metric to indicate the response of tree assemblage to anthropogenic disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号