首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root tensile strength plays an important role in soil stabilization and fixation. Testing and separating the different factors that affect root tensile strength are important. In the present study, the effects of four factors, namely, gauge length, strain rate, species, and root diameter, on root tensile strength were studied. Uniaxial tensile tests were conducted to acquire the root tensile strength of five tree species commonly growing in the mountains of northern China, namely, Chinese pine (Pinus tabulaeformis Carr.), Larch (Larix principis-rupprechtii Mayr.), White birch (Betula platyphylla Suk.), Mongolian oak (Quercus mongolicus Fisch.), and Elm (Ulmus pumila L.). Based on the results, Elm and White birch roots were the most resistant to tension, followed by Mongolian oak and Chinese pine roots. Larch roots were found to be the least resistant to tension. A power relationship was established between root diameter and root tensile strength. Based on linear regression analysis, gauge length was negatively correlated with root tensile strength. Tensile strength decreased with increasing gauge length. In addition, an unexpected variation of tensile strength was observed between two strain rates (10 and 400?mm?min?1). The present study can serve as a basis for further studies on mechanical properties of root system and root reinforcement under different test circumstances, although this should be done with caution.  相似文献   

2.
3.
The formation of callose in tree roots has been suggested as a physiological indicator of aluminum (Al) toxicity. Quantifying callose in the roots in forest soils, however, is hampered by the presence of autofluorescent materials in the roots that disturb the measurement of callose by fluorescence spectrophotometry. Tannins in the roots cause these measurement problems. Here we report on the measurement of callose in the root apices of European chestnut (Castanea sativa) seedlings collected in an acidified forest soil. The callose was quantified with a modified protocol which included three washing steps with polyvinylpolypyrrolidone (PVPP) before the callose was extracted. This procedure reduced the autofluorescence by about 50%. With the use of water or ethanol alone, callose could be measured in only about 15% of the root samples, whereas with the use of PVPP callose could be determined in 95% of the samples. This improved method could help to evaluate the effects of Al toxicity on tree roots grown in forest soils, where callose is detected as a physiological indicator.  相似文献   

4.
? Premise of the study: In a warming climate, boreal trees may have adjusted their growth strategy (e.g., onset and coordination of growth among different organs such as stem, shoot, and foliage, within and among species) to cope with the extended growing seasons. A detailed investigation into growth of different organs during a growing season may help us assess the potential effects of climate change on tree growth in the boreal forest. ? Methods: The intra-annual growth of stem xylem, shoot tips, and foliage area of Pinus banksiana, Populus tremuloides, and Betula papyrifera was monitored in a boreal forest in Quebec, Canada during the growing season of 2007. Xylem formation was measured at weekly intervals, and shoot elongation and foliage expansion were measured three times per week from May to September. Growth indices for stem, shoot, and foliage were calculated and used to identify any climate-growth dependence. ? Key results: The time periods required for stem growth, branch extension, and foliage expansion differed among species. Of the three species, P. banksiana had the earliest budburst (20 May) yet the latest completion date of the foliage growth (2 August); P. tremuloides had the latest budburst (27 May) yet the earliest completion date of the foliage growth (10 July). Air temperature positively affected shoot extension growth of all three species. Precipitation positively influenced stem growth of the two broadleaf species, whereas growing season temperature positively impacted stem growth of P. banksiana. ? Conclusion: The results show that both the timing of growth processes and environmental dependences differ among co-occurring species, thereby leading to different adaptive capability of these boreal tree species to climate change.  相似文献   

5.
Plant and Soil - Na+/H+ antiporter (NHX1) was reported to be induced by NaCl in plants and NaCl can alleviate the toxic effect in plants caused by cadmium (Cd). However, it is unknown whether the...  相似文献   

6.
The time courses of CO2, CH4, and H2 accumulation and O2 absorption at the exposure of trunk wood samples taken from living trees of birch (Betula pendula Roth.), bird cherry tree (Padus avium Mill.), and pine (Pinus sylvestris L.) in the closed volume were studied. The activity of these processes at different temperatures (from 5 to 55°C) was also examined. The main components of gas exchange in all three tree species were O2 absorption and CO2 evolution. The fluxes of these gases were equal. In experiments with dehydration-hydration of wood samples, the intrawood origin of “woody” methane was established. Emission of CH4 and H2 from the wood depended on temperature. The temperature dependence of CH4 emission was similar to the temperature dependence of wood respiration. The high correlation between CO2, CH4, and H2 release and O2 absorption was noted. The relationships between these gas-exchange parameters were not species-specific. Temperature maxima of CH4 emission and the respiratory activity coincided. This implies that the highest methane emission should be expected in the period of the growth season most favorable for tree physiology. For the wood from all tree species, the ratio between released CH4 and CO2 volumes was close to 1: 160. This means that the annual methane emission from living tree is about 2 Mt C, attaining 4% of total methane emission from the territory of North Eurasia. However, taking into account a temperature dependence of methane exchange between the vegetation cover and atmosphere, we can expect that, at global climate warming, methane emission volume might be substantial.  相似文献   

7.
Thermal conductivity of functional citrus tree wood   总被引:1,自引:0,他引:1       下载免费PDF全文
Thermal conductivity coefficients have been determined for longitudinal and transverse flow in 4 varieties of fresh Citrus wood using steady state-methods. Equations were developed from which thermal conductivity could be rapidly estimated from moisture content or electrical conductivity. The heat balance of large and small tree trunks on a freezing night has been calculated on the basis of the coefficients.  相似文献   

8.
9.
杨树细根及草根的生产力与周转的研究   总被引:21,自引:4,他引:21  
对北方杨树人工林0-40cm土层中杨树细根和草根(≤2mm)年生物量、分解量、死亡量、生长量和周转率进行观察研究。结果表明,杨树细根的年生物量为2.062t.hm^-2,死根生物量为0.746t.hm^-2,分解量为0.158t.hm^2,生长量为2.351t.hm^-2,周转率为每年1.14次,活草根的年生物量、死根生物量、分解量、生长量和周转率分别0.501、0.035、0.023、0.691t.hm^-2和1.38,同时给出了杨树细根干重损失随分解时间变化的方程:1nx/x0=0.9515e^-0.0014t。  相似文献   

10.
Responses of tree fine roots to temperature   总被引:21,自引:0,他引:21  
Soil temperature can influence the functioning of roots in many ways. If soil moisture and nutrient availability are adequate, rates of root length extension and root mortality increase with increasing soil temperature, at least up to an optimal temperature for root growth, which seems to vary among taxa. Root growth and root mortality are highly seasonal in perennial plants, with a flush of growth in spring and significant mortality in the fall. At present we do not understand whether root growth phenology responds to the same temperature cues that are known to control shoot growth. We also do not understand whether the flush of root growth in the spring depends on the utilization of stored nonstructural carbohydrates, or if it is fueled by current photosynthate. Root respiration increases exponentially with temperature, but Q 10 values range widely from c . 1.5 to > 3.0. Significant questions yet to be resolved are: whether rates of root respiration acclimate to soil temperature, and what mechanisms control acclimation if it occurs. Limited data suggest that fine roots depend heavily on the import of new carbon (C) from the canopy during the growing season. We hypothesize that root growth and root respiration are tightly linked to whole-canopy assimilation through complex source–sink relationships within the plant. Our understanding of how the whole plant responds to dynamic changes in soil temperature, moisture and nutrient availability is poor, even though it is well known that multiple growth-limiting resources change simultaneously through time during a typical growing season. We review the interactions between soil temperature and other growth-limiting factors to illustrate how simple generalizations about temperature and root functioning can be misleading.  相似文献   

11.
12.
Plant and Soil - Tree roots contribute large quantities of biomass in forests and are important drivers of different ecosystem processes. However, estimation of root biomass remains a challenge. We...  相似文献   

13.
14.
15.
Heritability is an important component of the ability of a trait to respond to natural selection; variation in heritability can lead to differences in how a trait responds to selection pressures. Here we test whether an important physiological trait, immune function, varies by comparing heritability estimates through cross-fostering brood manipulation at three wide-spread sites in the tree swallow (Tachycineta bicolor): Alaska, New York and Tennessee. In two of three sites, there was no additive genetic component to nestling immune response to the mitogen phytohaemagglutinin, while immune response had a heritable component in Tennessee. Bootstrapping revealed significant differences in estimated heritability. This conclusion was supported by mother–offspring regressions; in Tennessee breeding females mounting strong immune responses tended to have offspring with strong immune responses, while in New York and Alaska, there was no relationship between the immune responses of mothers and offspring. These results suggest that studies investigating the roles of common origin and rearing environment should consider yearly or spatial variation within a species.  相似文献   

16.
Uncertainty in biomass estimates is one of the greatest limitations to models of carbon flux in tropical forests. Previous comparisons of field‐based estimates of the aboveground biomass (AGB) of trees greater than 10 cm diameter within Amazonia have been limited by the paucity of data for western Amazon forests, and the use of site‐specific methods to estimate biomass from inventory data. In addition, the role of regional variation in stand‐level wood specific gravity has not previously been considered. Using data from 56 mature forest plots across Amazonia, we consider the relative roles of species composition (wood specific gravity) and forest structure (basal area) in determining variation in AGB. Mean stand‐level wood specific gravity, on a per stem basis, is 15.8% higher in forests in central and eastern, compared with northwestern Amazonia. This pattern is due to the higher diversity and abundance of taxa with high specific gravity values in central and eastern Amazonia, and the greater diversity and abundance of taxa with low specific gravity values in western Amazonia. For two estimates of AGB derived using different allometric equations, basal area explains 51.7% and 63.4%, and stand‐level specific gravity 45.4% and 29.7%, of the total variation in AGB. The variation in specific gravity is important because it determines the regional scale, spatial pattern of AGB. When weighting by specific gravity is included, central and eastern Amazon forests have significantly higher AGB than stands in northwest or southwest Amazonia. The regional‐scale pattern of species composition therefore defines a broad gradient of AGB across Amazonia.  相似文献   

17.
Do trees of life have roots? What do these roots look like? In this contribution, I argue that research on the origins of life might offer glimpses on the topology of these very roots. More specifically, I argue (1) that the roots of the tree of life go well below the level of the commonly mentioned ‘ancestral organisms’ down into the level of much simpler, minimally living entities that might be referred to as ‘protoliving systems’, and (2) that further below, a system of roots gradually dissolves into non-living matter along several functional dimensions. In between non-living and living matter, one finds physico-chemical systems that I propose to characterize by a ‘lifeness signature’. In turn, this ‘lifeness signature’ might also account for a diverse range of biochemical entities that are found to be ‘less-than-living’ yet ‘more-than-non-living’.  相似文献   

18.
The first analyses of gene sequence data indicated that the eukaryotic tree of life consisted of a long stem of microbial groups "topped" by a crown-containing plants, animals, and fungi and their microbial relatives. Although more recent multigene concatenated analyses have refined the relationships among the many branches of eukaryotes, the root of the eukaryotic tree of life has remained elusive. Inferring the root of extant eukaryotes is challenging because of the age of the group (~1.7-2.1 billion years old), tremendous heterogeneity in rates of evolution among lineages, and lack of obvious outgroups for many genes. Here, we reconstruct a rooted phylogeny of extant eukaryotes based on minimizing the number of duplications and losses among a collection of gene trees. This approach does not require outgroup sequences or assumptions of orthology among sequences. We also explore the impact of taxon and gene sampling and assess support for alternative hypotheses for the root. Using 20 gene trees from 84 diverse eukaryotic lineages, this approach recovers robust eukaryotic clades and reveals evidence for a eukaryotic root that lies between the Opisthokonta (animals, fungi and their microbial relatives) and all remaining eukaryotes.  相似文献   

19.
Wood density is an important plant trait that influences a range of ecological processes, including resistance to damage and growth rates. Wood density is highly dependent on anatomical characteristics associated with the conductive tissue of trees (xylem and phloem) and the fibre matrix in which they occur. Here, we investigated variation in the wood density of the widespread mangrove species Avicennia marina in the Exmouth Gulf in Western Australia and in the Firth of Thames in New Zealand. We assessed how variation in xylem vessel size, fibre wall thickness and proportion of phloem within the wood contributed to variation in wood density and how these characteristics were linked to growth rates. We found the wood density of A. marina to be higher in Western Australia than in New Zealand and to be higher in taller seaward fringing trees than in scrub trees growing high in the intertidal. At the cellular level, high wood density was associated with large xylem vessels and thick fibre walls. Additionally, wood density increased with decreasing proportions of phloem per growth layer of wood. Tree growth rates were positively correlated with xylem vessel size and wood density. We conclude that A. marina can have large xylem vessel sizes and high growth rates while still maintaining high wood density because of the abundance and thickness of fibres in which vessels are found.  相似文献   

20.
Xylem feeding by periodical cicada nymphs on tree roots   总被引:1,自引:0,他引:1  
Abstract. 1. Histological sections of tree roots on which periodical cicada nymphs of both the 17-year and the 13-year race arid various instars had fed showed that salivary sheaths made by the nymphs ended in xylem vessels.
2. Because no salivary sheaths were found in phloem cells, this observation indicates that cicada nymphs are xylem feeders throughout their developmental period.
3. The habit of feeding on xylem fluid, which is extremely dilute, may explain why periodical cicada nymphs require so many years (13 or 17) to mature. It may also explain why they excrete amino acids rather than sugars, as phloem feeders do.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号