首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5 mutagen-sensitive mutants of Drosophila melanogaster, reported to perform normal or only slightly reduced excision repair of UV damage, were examined by an unscheduled DNA synthesis (UDS) assay. This assay measures the ability of cultured primary cells, derived from each mutant, to perform the resynthesis step in the excision repair pathway, following damage to cellular DNA by direct-acting alkylating agents, UV or X-irradiation. 2 mutants, classified as completely or partially proficient for both excision and postreplication repair of UV damage, mus(1)103 and mus(2)205, were found to give positive UDS responses only for UV damage. These mutants exhibit no measurable UDS activity following DNA damage by several different alkylating agents and X-rays. 3 mutants, classified as having no defect in excision repair, but measurable defects in postreplication repair of UV damage, mei-41, mus(1)101, and mus(3)310 exhibit 3 different response patterns when tested with the battery of agents in the UDS assay. The mutant mei-41 exhibits a highly positive UDS response following damage by all agents, consistent with its prior classification as excision-repair-proficient, but postreplication-repair-deficient for UV damage. The mutant mus(1)101, however, exhibits a strong positive UDS response following only UV damage and appears to be blocked in the excision repair of damage produced by both alkylating agents and X-irradiation. Finally, mus(3)310 exhibits no UDS response to alkylation, X-ray or UV damage. This is not consistent with its previous classification. Results obtained with the quantitative in vitro UDS assay are entirely consistent with the results from two separate in vivo measures of excision repair deficiency following DNA damage, larval hypersensitivity to killing and hypermutability in the sex-linked recessive lethal test.  相似文献   

2.
A reduction in the amount of UV-induced unscheduled DNA synthesis (UDS), and reduced cell survival and host-cell reactivation against UV exposure in Hutchinson-Gilford progeria syndrome cell strains were shown. UV-induced UDS in 4 progeria cell strains was 33-50% of the normal level. A similar reduction in the UV-induced UDS in normal cells was caused by gamma-ray irradiation to the cells before UV irradiation. The dose of gamma-rays required to cause a reduction in UDS of normal cells to the level of progeria cells was 40 Gy and the reduction was reversible after 2 days. In progeria cells, gamma-ray irradiation further reduced UDS with a lower gamma-ray dose required than in normal cells, and the reduction was also reversible but with less relative recovery than in normal cells. The presence of a 'built-in' defect in progeria cells responsible for the reduced DNA-repair capacity was suggested, and such defect may share a common mechanism with the reduction of UV-induced UDS in normal cells caused by gamma-ray irradiation.  相似文献   

3.
The regulation of nucleotide excision repair and base excision repair by normal and repair deficient human cells was determined. Synchronous cultures of WI-38 normal diploid fibroblasts and Xeroderma pigmentosum fibroblasts (complementation group D) (XP-D) were used to investigate whether DNA repair pathways were modulated during the cell cycle. Two criteria were used: (1) unscheduled DNA synthesis (UDS) in the presence of hydroxyurea (HU) after exposure to UV light or after exposure to N-acetoxy-acetylaminofluorene (N-AcO-AAF) to quantitate nucleotide excision repair or UDS after exposure to methylmethane sulfonate (MMS) to measure base excision repair; (2) repair replication into parental DNA in the absence of HU after exposure to UV light. Nucleotide excision repair after UV irradiation was induced in WI-38 fibroblasts during the cell cycle reaching a maximum in cultures exposed 14–15 h after cell stimulation. Similar results were observed after exposure to N-AcO-AAF. DNA repair was increased 2–4-fold after UV exposure and was increased 3-fold after N-AcO-AAF exposure. In either instance nucleotide excision repair was sequentially stimulated prior to the enhancement of base excision repair which was stimulated prior to the induction of DNA replication. In contrast XP-D failed to induce nucleotide excision repair after UV irradiation at any interval in the cell cycle. However, base excision repair and DNA replication were stimulated comparable to that enhancement observed in WI-38 cells. The distinctive induction of nucleotide excision repair and base excision repair prior to the onset of DNA replication suggests that separate DNA repair complexes may be formed during the eucaryotic cell cycle.  相似文献   

4.
7 strains of human primary fibroblasts were chosen from the complementation groups A through G of xeroderma pigmentosum; these strains are UV-sensitive and deficient in excision repair of UV damage on the criterion of unscheduled DNA synthesis (UDS). They were compared with normal human fibroblasts and one xeroderma pigmentosum variant with regard to their capacity to remove pyrimidine dimers, induced in their DNA by UV at 253.7 nm. The XP variant showed a normal level of dimer removal, whereas 6 of the other XP strains had a greatly reduced capacity to remove this DNA damage, in agreement with their individual levels of UDS. Strain XP230S (complementation group F), however, only showed a 20% reduction in the removal of dimers, which is much less than expected from the low level of UDS in this strain.  相似文献   

5.
Spivak G 《Mutation research》2005,577(1-2):162-169
  相似文献   

6.
7.
We have directly compared in resting human mononuclear leukocytes the DNA repair effects caused by ADP-ribosyl transferase (ADPRT) activity following DNA damage induction by gamma radiation, UV radiation, ethylene oxide (EO) and N-acetoxy-2-acetylaminofluorene (NA-AAF). The presence of inhibitors of ADPRT during the quantitation of unscheduled DNA synthesis (UDS) resulted in about a 2-fold increase of UDS when induced by gamma radiation, UV radiation or EO. The stimulation of UDS by EO, UV- or gamma-radiation in the presence of an ADPRT inhibitor was equally strong whether 1 mM or 10 mM hydroxyurea was used to suppress scheduled DNA synthesis. The level of NA-AAF induced UDS was not affected by inhibitors of ADPRT. In addition, direct estimation of ADPRT activity revealed that at doses giving maximal UDS, NA-AAF damage did not induce a measurable enzymatic activity whereas gamma-radiation, UV radiation and EO all showed a significant dose response increase. We have interpreted our data to mean that NA-AAF induced UDS estimates DNA repair relating mainly to DNA lesions that are recognized with difficulty, and hence, the rate of endonuclease-induced DNA strand break accumulation is not sufficient to allow a stimulation of ADPRT and affect the quantitation of UDS.  相似文献   

8.
9.
Two siblings have been reported whose clinical manifestations (cutaneous photosensitivity and central nervous system dysfunction) are strongly reminiscent of the DeSanctis-Cacchione syndrome (DCS) variant of xeroderma pigmentosum (XP), a severe form of XP. Fibroblasts from the siblings showed UV sensitivity, a failure of recovery of RNA synthesis (RRS) after UV irradiation, and a normal level of unscheduled DNA synthesis (UDS), which were, unexpectedly, the biochemical characteristics usually associated with Cockayne syndrome (CS). However, no complementation group assignment in these cells has yet been performed. We here report that these patients can be assigned to CS complementation group B (CSB) by cell fusion complementation analysis. To our knowledge, these are the first patients with defects in the CSB gene to be associated with an XP phenotype. The results imply that the gene product from the CSB gene must interact with the gene products involved in excision repair and associated with XP.  相似文献   

10.
Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by brittle hair, mental and growth retardation, peculiar face, ichthyosis, and in 20% of the reported cases photosensitivity. Cellular photosensitivity due to the same genetic defect present in xeroderma pigmentosum group D (XP-D) has been described in several patients. Nine patients with clinical symptoms diagnostic for TTD have been identified in Italy to date. We report the results of DNA repair investigations performed in cultured fibroblasts from these patients and 8 TTD parents. Survival, DNA repair synthesis and RNA synthesis following UV irradiation were all normal in the 8 TTD heterozygous cell strains. Among the 9 TTD-affected individuals, normal cellular UV sensitivity was observed in the 2 patients without signs of clinical photosensitivity. In contrast, the other 7 TTD cell strains showed a notable reduction in UV-induced DNA repair synthesis (UDS) levels, ranging between 40% and 5-15% of normal values. Complementation analysis indicated that in the repair-deficient TTD cell strains the genetic defect is the same as that present in XP-D cells. The biochemical heterogeneity of the XP-D defect in TTD patients characterized by different degrees of defective UDS results in different patterns of response to the killing effect of UV light in non-proliferating cells.  相似文献   

11.
12.
Summary The distribution of spontaneous sister chromatid exchanges (SCEs) was studied in PHA-stimulated lymphocytes from 15 patients affected by xeroderma pigmentosum (XP). The study of unscheduled DNA synthesis (UDS) in twelve of these patients showed that seven were deficient and five proficient. The number of SCEs in XP patient cells was higher than in those of 19 controls, and the distributions of SCEs per cell were significantly different. However, the results varied when XP patients were considered in relation to their UDS: the group of XP patients with proficient UDS did not differ, whereas the group of XP patients with deficient UDS was very significantly different from controls. The group not tested for UDS was similar to the deficient UDS group. The possible relationship between the increase of SCEs and the type of DNA repair defect is discussed.  相似文献   

13.
A DNA-repair mutant was characterized that has the extraordinary and interesting properties of extreme sensitivity to UV killing combined with a high level of nucleotide excision repair. The mutant V-H1 isolated from the V79 Chinese hamster cell line appeared very stable, with a reversion frequency of about 3.5 × 10−7. Genetic complementation analysis indicates that V-H1 belongs to the first complementation group of UV-sensitive Chinese hamster ovary (CHO) mutants described by Thompson et al. (1981). This correponds with data on cross-sensitivity and mutation induction after UV irradiation published by this group. Surprisingly, the mutant V-H1 shows only slightly reduced (to ∼ 70%) unscheduled DNA synthesis (UDS) after UV exposure, while the other two mutants of this complementation group are deficient in UDS after UV. In agreement with the high residual UDS, in V-H1 also the amount of repair replication in response to UV treatment is relatively high (∼ 50%). It has also been shown that the incision step of the nucleotide excision pathway takes place in V-H1 (with a lower rate than observed in wild-type cells), whereas another mutant (UV5) of the same complementation group is deficient in incision.This heterogeneity within the first complementation group indicates that the repair gene of this complementation group may have more than one functionally domain or that the gene is not involved in the incision per se but is involved in e.g. preferential repair of active genes.  相似文献   

14.
We investigated UV-induced unscheduled DNA synthesis (UDS) in skin fibroblasts from seven unrelated patients with clinically apparent Werner's syndrome (WS). WS cells exhibited greatly abbreviated in vitro lifespans, the extents of which ranged from about 20 to 50% of the normal. However, WS cells in early and senescent phases of growth showed the same quantity of DNA repair following UV exposure as did normal fibroblasts.  相似文献   

15.
16.
Cultured fibroblasts of patients with the DNA repair syndrome xeroderma pigmentosum (XP) were injected with crude cell extracts from various human cells. Injected fibroblasts were then assayed for unscheduled DNA synthesis (UDS) to see whether the injected extract could complement their deficiency in the removal of u.v.-induced thymidine dimers from their DNA. Microinjection of extracts from repair-proficient cells (such as HeLa, placenta) and from cells belonging to XP complementation group C resulted in a temporary correction of the DNA repair defect in XP-A cells but not in cells from complementation groups C, D or F. Extracts prepared from XP-A cells were unable to correct the XP-A repair defect. The UDS of phenotypically corrected XP-A cells is u.v.-specific and can reach the level of normal cells. The XP-A correcting factor was found to be sensitive to the action of proteinase K, suggesting that it is a protein. It is present in normal cells in high amounts, it is stable on storage and can still be detected in the injected cells 8 h after injection. The microinjection assay described in this paper provides a useful tool for the purification of the XP-A (and possibly other) factor(s) involved in DNA repair.  相似文献   

17.
Two siblings are described whose clinical presentation of cutaneous photosensitivity and central nervous system dysfunction is strongly reminiscent of the DeSanctis-Cacchione syndrome (DCS) variant of xeroderma pigmentosum. An extensive clinical evaluation supported a diagnosis of DCS and documented previously unreported findings. In vitro fibroblast studies showed UV sensitivity that was two to three times that of normal controls. However, neither a post-UV-irradiation DNA excision-repair defect indicative of XP nor a semiconservative DNA replication defect indicative of XP variant was found. Rather, a failure of RNA synthesis to recover to normal levels after UV exposure was observed, a biochemical abnormality seen in Cockayne syndrome (CS), one of the premature-aging syndromes with clinical UV sensitivity. These patients, therefore, clinically have XP, but their biochemical characteristics suggest CS. The reason(s) for the severe neurologic disease, in light of the relatively mild cutaneous abnormalities, is unclear. Other cases with unusual fibroblast responses to irradiation have been noted in the literature and, along with the data from our patients, reinforce the notion of the complexity of DNA maintenance and repair.  相似文献   

18.
19.
Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer   总被引:11,自引:0,他引:11  
Xeroderma pigmentosum (XP) is a rare, autosomal recessive disease that is characterized by the extreme sensitivity of the skin to sunlight. Compared to normal individuals, XP patients have a more than 1000-fold increased risk of developing cancer on sun-exposed areas of the skin. Genetic and molecular analyses have revealed that the repair of ultraviolet (UV)-induced DNA damage is impaired in XP patients owing to mutations in genes that form part of a DNA-repair pathway known as nucleotide excision repair (NER). Two other diseases, Cockayne syndrome (CS) and the photosensitive form of trichothiodystrophy (TTD), are linked to a defect in the NER pathway. Strikingly, although CS and TTD patients are UV-sensitive, they do not develop skin cancer. The recently developed animal models that mimic the human phenotypes of XP, CS and TTD will contribute to a better understanding of the etiology of these diseases and the role of UV-induced DNA damage in the development of skin cancer.  相似文献   

20.
The xeroderma pigmentosum fibroblast strains XP2RO, complementation group E, and XP23OS, group F, were compared with normal human primary fibroblasts with regard to repair of damage induced by 254-nm UV. In XP2RO cells, repair DNA synthesis, measured by autoradiography (unscheduled DNA synthesis = UDS), was about 50% of the value found in normal human cells. In these cells also the removal of UV-induced sites recognized by a specific UV-endonuclease proceeds at a reduced rate. By having BUdR incorporated into the repaired regions, followed by the induction of breaks in these patches by 313-nm UV, it was shown that the reduced repair synthesis is not caused by a shorter length of the repair regions in XP2RO, but is solely due to a reduction in the number of sites removed by excision repair. In XP23OS a discrepancy was observed between the level of UDS, which was about 10% of the normal value, and other repair-dependent properties such as UV survival, host-cell reactivation and removal of UV-endonuclease-susceptible sites, which were less reduced than could be expected from the UDS level. However, when UDS was followed over a longer period than the 2 or 3 h normally used in UDS analysis, it appeared that in XP23OS cells, the rate of UDS remained constant whereas the rate decreased in normal control cells. Consequently, the residual level of UDS varies with the period over which it is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号