首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protracted absence of muscle activation initiates complex cellular and molecular reactions aimed at restoring functional neuromuscular transmission and preventing degenerative processes. A central aspect of these reactions is the sprouting of intramuscular nerves in the vicinity of inactivated muscle fibers. Sprouts emerging from terminal nerve branches and nodes of Ranvier can reestablish functional contacts with inactive muscle fibers, and this is an essential restorative process in pathological conditions of the neuromuscular system. Due to their rapid upregulation in inactive skeletal muscle fibers and their ability to induce nerve sprouting in adult muscle, insulin-like growth factors (IGFs) are candidate signaling molecules to promote restorative reactions in the neuromuscular system. In this study we have exploited the high affinity and specificity of IGF-binding protein 4 (IGF-BP4) and IGF-BP5 for IGF1 and IGF2 to determine whether these growth factors are involved in the nerve sprouting reaction in paralyzed skeletal muscle. In tissue culture experiments with sensory- and motoneurons we demonstrate that the neurite promoting activity of IGF1 is blocked by IGF-BP4, and that a similar IGF-BP-sensitive activity is detected in muscle extracts from paralyzed, but not from control muscle. In in vivo experiments, we show that local delivery of IGF-BP4 to Botulinum toxin A-paralyzed skeletal muscle effectively prevents nerve sprouting in that muscle. Our findings indicate that muscle IGFs play an essential role in intramuscular nerve sprouting. In addition, these findings suggest that IGFs are major signaling factors from inactivated muscle to promote local restorative reactions, including interstitial cell proliferation and nerve sprouting.  相似文献   

2.
A series of in vivo studies have been carried out using the chick embryo to address several critical questions concerning the biological, and to a lesser extent, the biochemical characteristics of a putative avian muscle-derived trophic agent that promotes motoneuron survival in vivo. A partially purified fraction of muscle extract was shown to be heat and trypsin sensitive and rescued motoneurons from naturally occurring cell death in a dose-dependent fashion. Muscle extract had no effect on mitotic activity in the spinal cord and did not alter cell number when administered either before or after the normal cell death period. The survival promoting activity in the muscle extract appears to be developmentally regulated. Treatment with muscle extract during the cell death period did not permanently rescue motoneurons. The motoneuron survival-promoting activity found in skeletal muscle was not present in extracts from a variety of other tissues, including liver, kidney, lung, heart, and smooth muscle. Survival activity was also found in extracts from fetal mouse, rat, and human skeletal muscle. Conditioned medium derived from avian myotube cultures also prevented motoneuron death when administered in vivo to chick embryos. Treatment of embryos in ovo with muscle extract had no effect on several properties of developing muscles. With the exception of cranial motoneurons, treatment with muscle extract did not promote the survival of several other populations of neurons in the central and peripheral nervous system that also exhibit naturally occurring cell death. Initial biochemical characterization suggests that the activity in skeletal muscle is an acidic protein between 10 and 30 kD. Examination of a number of previously characterized growth and trophic agents in our in vivo assay have identified several molecules that promote motoneuron survival to one degree or another. These include S100β, brain-derived neurotrophic factor (BDNF), neurotrophin 4/5 (NT-4/5), ciliary neurotrophic factor (CNTF), transforming growth factor β (TGFβ), platelet-derived growth factor-AB (PDGF-AB), leukemia inhibitory factor (CDF/LIF), and insulin-like growth factors I and II (IGF). By contrast, the following agents were ineffective: nerve growth factor (NGF), neurotrophin-3 (NT3), epidermal growth factor (EGF), acidic and basic fibroblast growth factors (aFGF, bFGF), and the heparin-binding growth-associated molecule (HB-GAM). Of those agents that were effective, CDF/LIF, IGF-1 and -2, BDNF, and TGF are reported to be expressed in developing or adult muscle. Studies are underway to determine whether the survival activity found in avian muscle extract can be accounted for by one or more of these growth factors. Of all the tissue extracts and purified proteins tested here, only the neurotrophins—NGF, NT-3, and BDNF (but not NT-4/5)—rescured sensory neurons from naturally occurring cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Partial denervation or paralysis of adult skeletal muscle is followed by nerve sprouting, probably due to release of diffusible sprout-inducing activity by inactive muscle. Insulin-like growth factors (IGF1 and IFG2) are candidates for muscle-derived sprouting activity, because (a) they induce neurite growth from peripheral neurons in vitro; and (b) their mRNA levels in adult skeletal muscle increase severalfold after denervation or paralysis. We sought to determine whether the presence of elevated levels of IGFs in innervated adult skeletal muscle was sufficient to produce intramuscular nerve growth. Low concentrations of IGFs induced massive neurite growth from enriched embryonic chick motoneurons in vitro. Half-maximal responses required 0.2 nM IGF2 or IGF1, or 20 nM insulin. Similar hormone binding properties of motoneuron processes in vitro were observed. Exposure of adult rat or mouse gluteus muscle in vivo to low quantities of exogenous IGF2 or IGF1 led to intramuscular nerve sprouting. Numbers of sprouts in IGF-exposed muscles were 10-fold higher than in vehicle-exposed or untreated muscles, and 12.2% of the end plates in IGF-exposed muscle (control: 2.7%) had sprouts growing from them. The nerve growth reaction was accompanied by elevated levels of intramuscular nerve-specific growth-associated protein GAP43. Additional properties of IGF-exposed muscle included modest proliferation of interstitial cells and elevated interstitial J1 immunoreactivity. These results suggest that elevated levels of IGFs in denervated or paralyzed muscle might trigger coordinate regenerative reactions, including nerve sprouting and expression of nerve growth-supporting substrate molecules by activated interstitial cells.  相似文献   

4.
The neural and vascular systems share common guidance cues that have direct and independent signaling effects on nerves and endothelial cells. Here, we show that zebrafish Netrin 1a directs Dcc-mediated axon guidance of motoneurons and that this neural guidance function is essential for lymphangiogenesis. Specifically, Netrin 1a secreted by the muscle pioneers at the horizontal myoseptum (HMS) is required for the sprouting of dcc-expressing rostral primary motoneuron (RoP) axons and neighboring axons along the HMS, adjacent to the future trajectory of the parachordal chain (PAC). These axons are required for the formation of the PAC and, subsequently, the thoracic duct. The failure to form the PAC in netrin 1a or dcc morphants is phenocopied by laser ablation of motoneurons and is rescued both by cellular transplants and overexpression of dcc mRNA. These results provide a definitive example of the requirement of axons in endothelial guidance leading to the parallel patterning of nerves and vessels in vivo.  相似文献   

5.
J C Martinou  I Martinou  A C Kato 《Neuron》1992,8(4):737-744
We present evidence that the cholinergic differentiation factor (CDF), originally purified from cardiac and skeletal muscle cell-conditioned medium and found to be identical to leukemia inhibitory factor (LIF), promotes survival of embryonic day 14 rat motoneurons in vitro. These neurons were retrogradely labeled with the fluorescent tracer Dil and enriched on a density gradient or purified to homogeneity by fluorescence-activated cell sorting. Subnanomolar concentrations of CDF/LIF supported the survival of 85% of the motoneurons that would have died between days 1 and 4 of culture. The enhanced survival was accompanied by a 4-fold increase in choline acetyltransferase (ChAT) activity per culture. CDF/LIF also increased ChAT activity in dorsal spinal cord cultures, but had no detectable effect on ChAT levels in septal or striatal neuronal cultures. For comparison, other neurotrophic molecules were tested on motoneuron cultures. Ciliary neurotrophic factor had effects on motoneuron survival similar to those of CDF/LIF, whereas basic fibroblast growth factor was somewhat less effective. Nerve growth factor had no effect on the survival of rat motoneurons.  相似文献   

6.
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.  相似文献   

7.
The response of motoneurons to neurotrophins   总被引:7,自引:0,他引:7  
The ongoing search for neurotrophic factors for motoneurons has led to the identification of a number of molecules which regulate motoneuron survival and function. Among these factors, the neurotrophins brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and NT-4/5 but not nerve growth factor (NGF), can prevent embryonic and postnatal motoneuron cell death in a variety of experimental paradigms. Analysis of expression of p75, trkB and trkC—components of the neurotrophin receptors—supports a potential physiological role for these factors as muscle- and glial-derived trophic factors for motoneurons. However, the survival of motoneurons during embryonic development is not reduced in the absence of BDNF, NT-3 or NT-4, as revealed by gene knockout experiments. This points to the involvement of additional trophic factors in the regulation of embryonic and postnatal motoneuron survival. The purpose of this review is to bring together the often prophetic observations from earlier studies—prior to the identification and characterization of these neurotrophins—with more recent results. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

8.
The neuromuscular connections of Drosophila are ideally suited for studying synaptic function and development. Hypotheses about cell recognition can be tested in a simple array of pre-and postsynaptic elements. Drosophila muscle fibers are multiply innervated by individually identifiable motoneurons. The neurons express several synaptic cotransmitters, including glutamate, proctolin, and octopamine, and are specialized by their synaptic morphology, neurotransmitters, and connectivity. During larval development the initial motoneuron endings grow extensively over the surface of the muscle fibers, and differentiate synaptic boutons of characteristic morphology. While considerable growth occurs postembryonically, the initial wiring of motoneurons to muscle fibers is accomplished during mid-to-late embryogenesis (stages 15–17). Efferent growth cones sample multiple muscle fibers with rapidly moving filopodia. Upon reaching their target muscle fibers, the growth cones rapidly differentiate into synaptic contacts whose morphology prefigures that of the larval junction. Mismatch experiments show that growth cones recognize specific muscle fibers, and can do so when the surrounding musculature is radically altered. However, when denied their normal targets, motoneurons can establish functional synapses on alternate muscle fibers. Blocking synaptic activity with either injected toxins or ion channel mutants does not derange synaptogenesis, but may influence the number of motor ending processes. The molecular mechanisms governing cellular recognition during synaptogenesis remain to be identified. However, several cell surface glycoproteins known to mediate cellular adhesion events in vitro are expressed by the developing synapses. Furthermore, enhancer detector lines have identified genes with expression restricted to small subsets of muscle fibers and /or motoneurons during the period of synaptogenesis. These observations suggest that in Drosophila a mechanism of target chemoaffinity may be involved in the genesis of stereotypic synaptic wiring. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
《Journal of Physiology》1998,92(3-4):279-281
More than 10 factors from different gene families are known to enhance motoneuron survival, and to be expressed in a manner consistent with a role in regulating motoneuron numbers during development. We provide evidence that: a) different factors may act on different sub-populations of motoneurons; b) different fcctors may act in synergy on a given motoneuron. Thus, the functional diversity of motoneurons, and the cellular complexity of their environment, may be reflected in the mechanisms that have evolved to keep them alive.  相似文献   

10.
We have examined the ability of different neurotrophic and growth factors to prevent axotomy-induced motoneuron cell death in the developing mouse spinal cord. After postnatal unilateral section of the mouse sciatic nerve, most motoneuron (MN) loss occurs in the lateral motor column of the fourth lumbar segment (L4). Significant axotomy-induced cell death occurred after surgery performed on or before postnatal day (PN) 5. In contrast, no significant cell loss was found when axotomy was performed after PN10. Axotomy on PN2 or PN5 resulted in a 44% loss of L4 motoneurons by 7 days, and a 66% loss of motoneurons by 10 days postsurgery. Implantation of gelfoam presoaked in various neurotrophic factors at the lesion site rescued axotomized motoneurons. Nerve growth factor (NGF), nedurotrophin-4/5 (NT-4/5) and ciliary neurotrophic factor (CNTF) rescued 20%–30% of motoneurons, whereas brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and insulin-like growth factor 1 (IGF-1) rescued virtually all motoneurons from axotomy-induced death. By contrast, platelet-derived growth factor (PDGF)-AA, PDGF-AB, basic fibroblast growth factor (bFGF), and interleukin (IL-6) were ineffective on motoneuron survival following axotomy. NGF, BDNF, NT-3, IGF-1, and CNTF also prevented axotomy-induced atrophy of surviving motoneurons. These data show that mouse lumbar motoneurons continue to be vulnerable to axotomy up to about 1 week after birth and that a number of trophic agents, including the neurotrophins, CNTF, and IGF-1, can prevent the death of these neurons following axotomy. Our studies confirm and extend previous reports on the time course of axotomy-induced mouse motoneuron death and the survival promoting effects of neurotrophic factors. 1994 John Wiley & Sons, Inc.  相似文献   

11.
To evaluate whether sex differences in the proportions of fibers of different phenotypes in the masseter muscle might be the result of differences in the behavior of their motoneurons, we studied the firing patterns of masseter motoneurons in adult male and female rabbits. Activity in individual motoneurons was determined from high spatial resolution EMG recordings made during cortically evoked rhythmic activation of the masticatory muscles. Although some motoneurons could be said to fire according to slow-tonic or fast-phasic patterns, most did not. In both sexes a substantial range of median firing rates and median firing durations was found. In adult males, masseter motoneurons fired more rapidly than those recorded from adult females. No significant sex differences in motoneuron firing duration were found. These results are consistent with the hypothesis that androgen-induced differences in rabbit masseter muscle fiber phenotype are a reflection of differences in motoneuron firing rate. Whether this effect of androgen is directly upon the motoneurons or is the result of a response of muscle fibers to androgen remains to be investigated.  相似文献   

12.
Members of the ciliary neurotrophic factor (CNTF)/leukemia inhibitory factor (LIF)/cardiotrophin gene family are potent survival factors for embryonic and lesioned motoneurons. These factors act via receptor complexes involving gp130 and LIFR-beta and ligand binding leads to activation of various signaling pathways, including phosphorylation of Stat3. The role of Stat3 in neuronal survival was investigated in mice by Cre-mediated gene ablation in motoneurons. Cre is expressed under the neurofilament light chain (NF-L) promoter, starting around E12 when these neurons become dependent on neurotrophic support. Loss of motoneurons during the embryonic period of naturally occurring cell death is not enhanced in NF-L-Cre; Stat3(flox/KO) mice although motoneurons isolated from these mice need higher concentrations of CNTF for maximal survival in culture. In contrast, motoneuron survival is significantly reduced after facial nerve lesion in the adult. These neurons, however, can be rescued by the addition of neurotrophic factors, including CNTF. Stat3 is essential for upregulation of Reg-2 and Bcl-xl expression in lesioned motoneurons. Our data show that Stat3 activation plays an essential role for motoneuron survival after nerve lesion in postnatal life but not during embryonic development, indicating that signaling requirements for motoneuron survival change during maturation.  相似文献   

13.
Polysialic acid influences specific pathfinding by avian motoneurons.   总被引:6,自引:0,他引:6  
J Tang  L Landmesser  U Rutishauser 《Neuron》1992,8(6):1031-1044
The influence of polysialic acid (PSA) on the neural cell adhesion molecule on motoneuron outgrowth and pathway formation was investigated by determining its temporal and spatial pattern of expression and by the effect that its removal had on motoneuron projection patterns. Motoneurons first expressed PSA as their growth cones began to segregate into motoneuron pool-specific groups in the plexus region; furthermore, PSA levels differed between motoneurons projecting to different targets. When PSA was removed during the period of axonal segregation in the plexus region projection errors were common. However, later removal during the process of muscle nerve formation did not result in projection errors. These results suggest that PSA modulates interactions between motoneuron axons and guidance molecules in the plexus region during axonal pathfinding.  相似文献   

14.
Naturally occurring motoneuron cell death during development is a well-described phenomenon and the existence of a survival factor provided by target muscles has been postulated. Blockade of activity by chronic application of a neuromuscular junction blocker rescues almost all motoneurons from cell death. The present study was conducted in order to examine the possibility that the motoneuron survival-promoting activity in muscles increases following activity blockade. Cell culture was used to assess the degree of motoneuron survival-promoting activity present in muscle extracts. Embryonic chick motoneurons were labeled by injecting the water-insoluble fluorescent dye, DiI (Molecular Probes, Inc.) into the spinal nerves both before and during the cell death period. The labeled cells extending long neurites were counted after 2 days of culture as viable motoneurons in low-density heterogeneous cell cultures. The culture medium, Ham F12/DMEM (1:1 mixture) supplemented with 10% horse serum, 5% chick serum, and 5% fetal calf serum, was employed as a basic culture medium for assessing motoneuron survival factor, since it supported the survival of a significantly higher number of motoneurons derived from embryos before cell death than those during the cell death period, thus representing the motoneuron's requirement for survival factor in vivo. The number of surviving motoneurons clearly increased in proportion to the amount of muscle extract added to the culture medium. In comparison with control chick embryos, the dose-response relation between the number of surviving motoneurons and the amount of muscle extract added did not change when embryos were used after chronic application of curare. These results therefore indicate that survival factor derived from target muscle is crucial to the in vitro motoneurons during the cell death period, but do not support the idea that inactive muscle contains a higher amount of the survival factor.  相似文献   

15.
The alpha motoneuron pool and the surface electromyogram (EMG) of the human soleus muscle are modelled, respectively, by an alpha motoneuron pool model generating the firing patterns in the motor units of e muscle and by a muscle model using these discharge patterns to simulate the surface EMG. In the alpha motoneuron pool model, we use a population of motoneurons in which cellular properties like cell size and membrane conductance are distributed according to experimentally observed data. By calculating the contribution from each motor unit, the muscle model predicts the EMG. Wave forms of the motor unit action potentials in the surface EMG are obtained from experimental data. Using the model, we are able to give a quantitative prediction of the motoneuron pool activity and the reflex EMG output at different preactivation levels. The simulated data are consistent with experimentally obtained results in healthy humans. During static isometric muscle preactivations, the simulations show that the reflex strength is highly dependent on the intrinsic threshold properties of the alpha motoneuron pool. Received: 27 April 1993/Accepted in revised form: 8 September 1993  相似文献   

16.
17.
The distinct effects of cytokines on cellular growth and differentiation suggest that specific signaling pathways mediate these diverse biological activities. Fibroblast growth factors (FGFs) are well-established inhibitors of skeletal muscle differentiation and may operate via activation of specific signaling pathways distinct from recently identified mitogen signaling pathways. We examined whether platelet-derived growth factor (PDGF)-activated signaling pathways are sufficient to mediate FGF-dependent repression of myogenesis by introducing the PDGF beta receptor into a mouse skeletal muscle cell line. Addition of PDGF-BB to cells expressing the PDGF beta receptor activated the PDGF beta receptor tyrosine kinase, stimulated mitogen-activated protein (MAP) kinase, and increased the steady-state levels of junB and c-fos mRNAs. Despite the activation of these intracellular signaling molecules, PDGF beta receptor activation elicited no detectable effect on cell proliferation or differentiation. In contrast to PDGF-BB, addition of FGF-2 to myoblasts activated signaling pathways that resulted in DNA synthesis and repression of differentiation. Because of the low number of endogenous FGF receptors expressed, FGF-stimulated signaling events, including tyrosine phosphorylation and activation of MAP kinase, could be detected only in cells expressing higher levels of a transfected FGF receptor cDNA. As the PDGF beta receptor- and FGF receptor-stimulated signaling pathways yield different biological responses in these skeletal muscle cells, we hypothesize that FGF-mediated repression of skeletal muscle differentiation activates signaling pathways distinct from those activated by the PDGF beta receptor. Activation of PDGF beta receptor tyrosine kinase activity, stimulation of MAP kinase, and upregulation of immediate-early gene expression are not sufficient to repress skeletal muscle differentiation.  相似文献   

18.
The variability in instantaneous frequency of cat motoneurons in response to various degrees of regularity and synchronization of input is used to examine several forms of data processing occurring in the cat motoneuron system. A theoretical basis is presented which distinguishes between spatial averaging and time averaging of information from muscle afferents and which suggests realizable experiments for assessing their relative strengths. The results of the experiments demonstrate spatial averaging to be a strong form of processing in the motoneuron system; time averaging is found to be much less so. Thus, temporal information is preserved to a greater extent by the motoneuron than is spatial information. Also, an inherent source of motoneuron variability is identified and linked with the process of rate limitation.  相似文献   

19.
Although much is known about the global effects of insulin-like growth factor 1 receptor (IGF1R)-mediated signaling on fetal growth and the clinical manifestations resulting from IGF/IGF1R deficiencies, we have an incomplete understanding of the cellular actions of this essential pathway during vertebrate embryogenesis. In this study, we inhibited IGF1R signaling during zebrafish embryogenesis using antisense morpholino oligonucleotides or a dominant-negative IGF1R fusion protein. IGF1R inhibition resulted in reduced embryonic growth, arrested development and increased lethality. IGF1R-deficient embryos had significant defects in the retina, inner ear, motoneurons and heart. No patterning abnormalities, however, were found in the brain or other embryonic tissues. At the cellular level, IGF1R inhibition increased caspase 3 activity and induced neuronal apoptosis. Coinjection of antiapoptotic bcl2-like mRNA attenuated the elevated apoptosis and rescued the retinal and motoneuron defects, but not the developmental arrest. Subsequent cell cycle analysis indicated an increased percentage of cells in G1 and a decreased percentage in S phase in IGF1R-deficient embryos independent of apoptosis. These results provide novel insight into the cellular basis of IGF1R function and show that IGF1R signaling does not function as an anteriorizing signal but regulates embryonic growth and development by promoting cell survival and cell cycle progression.  相似文献   

20.
Previous reports have shown that neuronal and glial cells express functionally active thrombin receptors. The thrombin receptor (PAR-1), a member of a growing family of protease activated receptors (PARs), requires cleavage of the extracellular amino-terminus domain by thrombin to induce signal transduction. Studies from our laboratory have shown that PAR-1 activation following the addition of thrombin or a synthetic thrombin receptor activating peptide (TRAP) induces motoneuron cell death both in vitro and in vivo. In addition to increasing motoneuron cell death, PAR- 1 activation leads to decreases in the mean neurite length and side branching in highly enriched motoneuron cultures. It has been suggested that motoneuron survival depends on access to sufficient target-derived neurotrophic factors through axonal branching and synaptic contacts. However, whether the thrombininduced effects on motoneurons can be prevented by neurotrophic factors is still unknown. Using highly enriched avian motoneuron cultures, we show here that alone, soluble chick skeletal muscle extracts (CMX), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial cell line-derived neurotrophic factor (GDNF) significantly increased motoneuron survival compared to controls, whereas nerve growth factor (NGF) did not have a significant effect on motoneuron survival. Furthermore, cotreatment with muscle-derived agents (i.e., CMX, BDNF, GDNF) significantly prevented the death of motoneurons induced by alpha-thrombin. Yet, non-muscle-derived agents (CNTF and NGF) had little or no significant effect in reversing thrombin-induced motoneuron death. CMX and CNTF significantly increased the mean length of neurites, whereas NGF, BDNF, and GDNF failed to enhance neurite outgrowth compared to controls. Furthermore, CMX and CNTF significantly prevented thrombin-induced inhibition of neurite outgrowth, whereas BDNF and GDNF only partially reversed thrombin-induced inhibition of neurite outgrowth. These findings show differential effects of neurotrophic factors on thrombin-induced motoneuron degeneration and suggest specific overlaps between the trophic and stress pathways activated by some neurotrophic agents and thrombin, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号