首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel approach to carbon-13 (13C) enrichment of chloroplast membranes (and plant materials in general) is presented for 13C-nuclear magnetic resonance (13C-NMR) studies. The method minimizes the occurrence of spectral complications arising from 13C-13C couplings resulting from a statistical distribution of 13C within the molecule with low probability of encountering two 13C atoms adjacent to each other. This is achieved by growing the plants in light surrounded by an atmosphere containing 1/3rd 12CO2 and 2/3rd 13CO2, liberated by weak acid-treatment of a mixture of corresponding barium carbonate salts.  相似文献   

2.
3.
Benzyloxycarbonyl (Z)-Ala-Pro-Phe-glyoxal and Z-Ala-Ala-Phe-glyoxal have both been shown to be inhibitors of alpha-chymotrypsin with minimal Ki values of 19 and 344 nM, respectively, at neutral pH. These Ki values increased at low and high pH with pKa values of approximately 4.0 and approximately 10.5, respectively. By using surface plasmon resonance, we show that the apparent association rate constant for Z-Ala-Pro-Phe-glyoxal is much lower than the value expected for a diffusion-controlled reaction. 13C NMR has been used to show that at low pH the glyoxal keto carbon is sp3-hybridized with a chemical shift of approximately 100.7 ppm and that the aldehyde carbon is hydrated with a chemical shift of approximately 91.6 ppm. The signal at approximately 100.7 ppm is assigned to the hemiketal formed between the hydroxy group of serine 195 and the keto carbon of the glyoxal. In a slow exchange process controlled by a pKa of approximately 4.5, the aldehyde carbon dehydrates to give a signal at approximately 205.5 ppm and the hemiketal forms an oxyanion at approximately 107.0 ppm. At higher pH, the re-hydration of the glyoxal aldehyde carbon leads to the signal at 107 ppm being replaced by a signal at 104 ppm (pKa approximately 9.2). On binding either Z-Ala-Pro-Phe-glyoxal or Z-Ala-Ala-Phe-glyoxal to alpha-chymotrypsin at 4 and 25 degrees C, 1H NMR is used to show that the binding of these glyoxal inhibitors raises the pKa value of the imidazolium ion of histidine 57 to a value of >11 at both 4 and 25 degrees C. We discuss the mechanistic significance of these results, and we propose that it is ligand binding that raises the pKa value of the imidazolium ring of histidine 57 allowing it to enhance the nucleophilicity of the hydroxy group of the active site serine 195 and lower the pKa value of the oxyanion forming a zwitterionic tetrahedral intermediate during catalysis.  相似文献   

4.
5.
Multicomponent high-resolution 1H and 13C NMR analysis has been employed for the purpose of detecting and quantifying a wide range of fatty acids (as triacylglycerols or otherwise) in encapsulated marine cod liver oil supplements. The 1H NMR technique provided quantitative data regarding the docosahexaenoic acid content of these products, which serves as a valuable index of fish oil quality, and a combination of both 1H and 13C spectroscopies permitted the analysis of many further components therein, including sn-1 monoacylglycerols, sn-1,2 and -1,3 diacylglycerol adducts, together with a range of minor components, such as trans-fatty acids, free glycerol and cholesterol, and added vitamins A and E. The identities of each of the above agents were confirmed by the application of two-dimensional 1H-1H spectroscopies. The NMR techniques employed also uniquely permitted determinations of the content of nonacylglycerol forms of highly unsaturated (or other) fatty acids in these products (i.e., ethyl esters), and therefore served as a means of distinguishing "natural" sources of cod liver oils from those subjected to chemical modification to and/or supplementation with synthetic derivatives such as ethyl docosahexaenoate or eicosopentaenoate. The analytical significance and putative health effects of the results acquired are discussed.  相似文献   

6.
Journal of Biomolecular NMR - Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high...  相似文献   

7.
8.

We introduce a 13C–2H Rotational Echo DOuble Resonance (REDOR) technique that uses the difference between on-resonance and off-resonance 2H irradiation to detect dynamic segments in deuterated molecules. By selectively inverting specific regions of the 2H magic-angle spinning (MAS) sideband manifold to recouple some of the deuterons to nearby carbons, we distinguish dynamic and rigid residues in 1D and 2D 13C spectra. We demonstrate this approach on deuterated GB1, H/D exchanged GB1, and perdeuterated bacterial cellulose. Numerical simulations reproduce the measured mixing-time and 2H carrier-frequency dependence of the REDOR dephasing of bacterial cellulose. Combining numerical simulations with experiments thus allow the extraction of motionally averaged quadrupolar couplings from REDOR dephasing values.

  相似文献   

9.
Synthetic studies to prepare ribonucleosides deuterated at C2' and the application of the developed procedures for the synthesis of 2H5-ribonucleosides from 1,2-O-isopropylidene-3-O-benzyl-ribofuranose-3,4,5,5'-2H4 have been reported.  相似文献   

10.
Biosynthetic studies of the glycopeptide teicoplanin by (1)H and (13)C NMR   总被引:1,自引:0,他引:1  
The biosynthesis of the glycopeptide antibiotic teicoplanin was studied by growing a teicoplanin producing strain of Actinoplanes teichomyceticus (ATCC 31121) on glucose containing either 34.0% [1-(13)C]glucose or 9.7% [U-(13)C]glucose. The fractional enrichment pattern of teicoplanin produced in the medium containing [1-(13)C]glucose was obtained from a one-dimensional (13)C spectrum. The enrichment pattern showed characteristic peaks indicating that amino acids 3 and 7 are derived from acetate, whereas amino acids 1, 2, 4, 5, and 6 are derived from tyrosine. Multiplet structures in heteronuclear single quantum coherence spectra of teicoplanin produced in the medium containing [U-(13)C]glucose showed characteristic coupling patterns supporting these results. Fractional enrichment patterns and multiplet structures of the three sugars in teicoplanin showed that about 50% of the sugars have the same labeling pattern as the glucose substrate whereas the rest have a labeling pattern showing that they are reassembled, probably from precursors in the primary metabolism.  相似文献   

11.
The biogenetic origin of the carbon atoms in tenellin has been established by adding 13C-enriched compounds to cultures of Beauveria bassiana, and determining the isotopic distribution in the metabolite by 13C nuclear magnetic resonance spectrometry. Tenellin is formed by condensation of an acetate-derived polyketide chain with a phenylpropanoid unit that may be phenylalanine. Alternate carbon atoms of the polyketide chain were labelled with sodium [1(-13C)]- and [2-(13C]-acetate; sodium [1,2-(13C)]acetate was incorporated as intact two-carbon units, the presence of which in tenellin was apparent from coupling between adjacent 13C-enriched carbons. Substituent methyl groups of the polyketide-derived alkenyl chain were labelled with L-[Me-13C]methionine. The labelling patterns from DL-[carboxy-13C]phenylalanine and DL-[alpha-13C]phenylalanine indicated a rearrangement of the propanoid component at some stage in the synthesis. The mass spectrum of tenellin from cultures administered L-[15N]phenylalanine showed isotopic enrichment similar to that obtained with 13C- or 14C-labelled phenylalanine. During incorporation of L-[carboxy-14C, beta-3H]phenylalanine 96% of the tritium label was lost, discounting the possibility of a 1,2-hydride shift during biosynthesis of the metabolite.  相似文献   

12.
Summary The protein human carbonic anhydrase II (HCA II) has been isotopically labeled with 2H, 13C and 15N for high-resolution NMR assignment studies and pulse sequence development. To increase the sensitivity of several key 1H/13C/15N triple-resonance correlation experiments, 2H has been incorporated into HCA II in order to decrease the rates of 13C and 1HN T2 relaxation. NMR quantities of protein with essentially complete aliphatic 2H incorporation have been obtained by growth of E. coli in defined media containing D2O, [1,2-13C2, 99%] sodium acetate, and [15N, 99%] ammonium chloride. Complete aliphatic deuterium enrichment is optimal for 13C and 15N backbone NMR assignment studies, since the 13C and 1HN T2 relaxation times and, therefore, sensitivity are maximized. In addition, complete aliphatic deuteration increases both resolution and sensitivity by eliminating the differential 2H isotopic shift observed for partially deuterated CHnDm moieties.  相似文献   

13.
The enrichment of tRNA at specific sites with carbon-13 has been accomplished in vivo using a mutant of Escherichia coli. A relaxed strain of E. coli auxotrophic for methionine was grown in a specifically defined medium supplemented with either [14C] or [13C]-methyl labeled methionine. Cells were collected at the end of the log-phase of growth and tRNA was extracted. Analysis of the radioactivity of the [14C]-labeled tRNA established an incorporation ratio of three labeled carbons per tRNA molecule. Incorporation of the [14C]-label in vivo was confined to the methylation of nucleotides as determined by thin layer chromatography of nucleotides resulting from a ribonuclease digestion of [14C]-labeled tRNA. The carbon-13 NMR spectrum of [13C]-enriched tRNA indicated a similar degree of incorporation into the methylated nucleotides by the substantial enhancement of [13C]-methyl NMR signals only. Assignment of signals has been made for the methyl groups of ribothymidine and N7-methylguanosine in E. coli tRNA.  相似文献   

14.
We review the use of stable carbon isotope ratios (δ13C) and radiocarbon natural abundances (Δ14C) for stream food web studies. The δ13C value of primary producers (e.g., periphytic algae, hereafter periphyton) in streams is controlled by isotopic fractionation during photosynthesis and variable δ13C of dissolved CO2. When periphyton δ13C differs from that of terrestrial primary producers, the relative contribution of autochthony and allochthony to stream food webs can be calculated. Moreover, the variation in periphyton δ13C can reveal how much stream consumers rely on local resources because each stream habitat (e.g., riffle vs. pool, open vs. shaded) usually has a distinctive δ13C. However, periphyton δ13C often overlaps with that of terrestrial organic matter. On the other hand, periphyton Δ14C is less variable than δ13C among habitats, and reflects the Δ14C of dissolved CO2, which could be a mixture of “aged” (Δ14C < 0 ‰) and “modern” (Δ14C > 0 ‰) carbon. This is because the Δ14C is corrected by its δ13C value for the isotopic fractionation during photosynthesis. Recent studies and our data indicate that many stream food webs are supported by “aged” carbon derived from the watershed via autochthonous production. The combined use of δ13C and Δ14C allows robust estimation of the carbon transfer pathway in a stream food web at multiple spatial scales ranging from the stream habitat level (e.g., riffle and pool) to watershed level (autochthony and allochthony). Furthermore, the Δ14C of stream food webs will expand our understanding about the time frame of carbon cycles in the watersheds.  相似文献   

15.
1H, 13C and 15N chemical shift referencing in biomolecular NMR   总被引:25,自引:2,他引:23  
Summary A considerable degree of variability exists in the way that 1H, 13C and 15N chemical shifts are reported and referenced for biomolecules. In this article we explore some of the reasons for this situation and propose guidelines for future chemical shift referencing and for conversion from many common 1H, 13C and 15N chemical shift standards, now used in biomolecular NMR, to those proposed here.Abbreviations TMS tetramethylsilane - TSP 3-(trimethylsilyl)-propionate, sodium salt - DSS 2,2-dimethyl-2-silapentane-5-sulfonate, sodium salt - TFE 2,2,2-trifluoroethanol - DMSO dimethyl sulfoxide  相似文献   

16.
17.
Two different pulse sequences used in 1H NMR spectroscopy termed free induction decay amplitude recovery (FIDAR) and spin-echo recovery (SER) were applied to studies of transport of paramagnetic ions in multicellular systems. The molar relaxivity of several paramagnetic species (Fe3+, Co2+, Ni2+, Cu2+, Mn2+, MnEDTA2-, dextran-magnetite) in water solutions was measured at 32 MHz resonance frequency. Ionic transport was studied using Mn2+ and MnEDTA2- as models for cations and anions, respectively, and plant root tissue as a model of a multicellular system.  相似文献   

18.
The reaction between cyanide and aurothiomalate (Autm) has been studied by 1H and 13C NMR spectroscopy and by uv spectroscopy. At cyanide:Autm ratios greater than or equal to 2, aurocyanide, [Au(CN)2]-, is the sole product but was also produced at lower ratios. Two intermediates were also identified. These were a mixed ligand complex, [tmAuCN]-, which accounted for over 80% of the gold at a ratio of cyanide to Autm of 1, and a bisthiomalato complex, [Autm2]-, which accounted for 6.8% of the total gold at this ratio of cyanide to Autm. The formation of these complexes may be significant in the antiarthritic activity of Autm since cyanide is produced by potential target cells such as polymorphonuclear leukocytes.  相似文献   

19.
In order to understand the role of the glycans in glycoproteins in solution, structural information obtained by NMR spectroscopy is obviously required. However, the assignment of the NMR signals from the glycans in larger glycoproteins is still difficult, mainly due to the lack of appropriate methods for the assignment of the resonances originating from the glycans. By using [U-13C6,2H7]glucose as a metabolic precursor, we have successfully prepared a glycoprotein whose glycan is uniformly labeled with 13C and partially with D at the sugar residues. The D to H exchange ratios at the C1-C6 positions of the sugar residues have been proven to provide useful information for the spectral assignments of the glycan in the glycoprotein. This is the first report on the residue-specific assignment of the anomeric resonances originating from a glycan attached to a glycoprotein by using the metabolic incorporation of hydrogen from the medium into a glycan labeled with [U-13C6,2H7]glucose.  相似文献   

20.
The Protein Kinase C family of enzymes is a group of serine/threonine kinases that play central roles in cell-cycle regulation, development and cancer. A key step in the activation of PKC is translocation to membranes and binding of membrane-associated activators including diacylglycerol (DAG). Interaction of novel and conventional isotypes of PKC with DAG and phorbol esters occurs through the two C1 regulatory domains (C1A and C1B), which exhibit distinct ligand binding selectivity that likely controls enzyme activation by different co-activators. PKC has also been implicated in physiological responses to alcohol consumption and it has been proposed that PKCα (Slater et al. J Biol Chem 272(10):6167–6173, 1997; Slater et al. Biochemistry 43(23):7601–7609, 2004), PKCε (Das et al. Biochem J 421(3):405–413, 2009) and PKCδ (Das et al. J Biol Chem 279(36):37964–37972, 2004; Das et al. Protein Sci 15(9):2107–2119, 2006) contain specific alcohol-binding sites in their C1 domains. We are interested in understanding how ethanol affects signal transduction processes through its affects on the structure and function of the C1 domains of PKC. Here we present the 1H, 15N and 13C NMR chemical shift assignments for the Rattus norvegicus PKCδ C1A and C1B proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号