首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overall deuterium content of plant lipids has been investigated by isotope ratio mass spectrometry (IRMS), and the site-specific natural isotope fractionation of hydrogen has been studied by 2H-NMR at natural abundance (SNIF-NMR). An analytical strategy has been developed in order to exploit the isotopomeric composition determined in clusters associated with different chemical sites of one or several fatty acid components. The method, which combines spectrometric and chromatographic data, enables isotopic criteria to be directly derived from raw vegetable oils containing in general two saturated and two unsaturated fatty acids. These results provide new information on isotopic fractionation caused by biochemical, physiological and natural environmental effects. Some alternation in the molecular deuterium distribution has been detected which may be related to the mechanism of fatty acid elongation. The successive methylene groups introduced through malonyl CoA are the subjects of different kinetic isotope effects since one of them is exclusively derived from NADH whereas the other has a contribution from pyruvate. A discriminant analysis of the cluster isotopic parameters enables several kinds of botanical precursors to be distinguished. The authenticating performances can be improved by taking into account the influence of climatic effects related to the region in which the plant grew.  相似文献   

2.
We have shown that site-specific natural isotope fractionation of hydrogen studied by NMR (SNIF-NMR) is an important source of information on the mechanistic and environmental effects which govern the photosynthesis of sugars and their fermentation into ethanol. Three isotope ratios associated with the methyl, methylene, and hydroxyl sites of ethanol are determined in achiral media. In this study we show that complementary information about possible stereospecific mechanisms involving the methylenic hydrogens is also rendered accessible by 2H-NMR enantiomeric resolution. The synthesis of mandelate esters enables exchange between the pro-R site of ethanol and water to be investigated. Simultaneous access to the three site-specific isotope ratios of the ethyl group is obtained at isotopic dilutions close to the natural ones. Mediation of the exchange by the enzymic system alcohol dehydrogenase-alpha-lipoyldehydrogenase and by the yeast Saccharomyces cerevisiae are compared. The progress of the reaction can be followed quantitatively as a function of time and the occurrence of glycolytic metabolism of endogeneous materials by yeast can be substantiated in a one-pot experiment.  相似文献   

3.
Site-specific natural isotope fractionation studied by nuclear magnetic resonance (SNIF-NMR) provides isotopic criteria that characterize a biochemical transformation such as fermentation and enable isotopic ratios measured in end products to be correlated with those of their precursors. In principle, a given set of transfer coefficients applies only to bioconversions performed under strictly identical conditions, a situation that is hardly fulfilled in most usual fermentation processes. In particular, natural raw materials such as fruits frequently involve complex mixtures of various yeast strains present at different concentrations. Series of experiments performed with different yeasts, different concentrations of car- bohydrates, and different yields of the transformation have shown that, although glycolysis is associated with overall hydrogen fractionation effects that may exceed 40 ppm, the range of variation in the isotopic ratios of the fermentation products, ethanol and water, does not exceed a few parts per million. Provided that the yield in ethanol reaches values higher than 70%, the nature of the yeast strain has minimal influence on the isotopic ratio of the methyl site of ethanol (D/H)I. In contrast, the isotope ratio of the methylene site, (D/H)II, may exhibit significant enhancements, in particular when ethanol is left in contact for a long time with poorly alcohologenic yeasts. These behaviors are consistent with hydrogen transfers from the aqueous medium to the methylene site, and partly to the methyl site, occurring with relatively high kinetic isotope effects. Since water acts as an open pool of hydrogens, however, only small isotopic variations are produced in the course of the fermentation reaction. Moreover, the partial connection between hydrogens from the methyl site of ethanol and hydrogens from glucose operates with relatively small secondary isotopic effects. No significant changes in the percentages of intra- and inter-molecular transfers of hydrogen to the methyl site are observed as a function of the nature of the yeast. These results support the use of the methyl isotopic ratio of ethanol as a probe of the isotopic behavior of carbohydrate precursors, whatever the yeast strains present in natural fermentation media.  相似文献   

4.
Hydrogen isotopic ratios of terrestrial plant leaf waxes (δD) have been widely used for paleoclimate reconstructions. However, underlying controls for the observed large variations in leaf wax δD values in different terrestrial vascular plants are still poorly understood, hampering quantitative paleoclimate interpretation. Here we report plant leaf wax and source water δD values from 102 plant species grown in a common environment (New York Botanic Garden), chosen to represent all the major lineages of terrestrial vascular plants and multiple origins of common plant growth forms. We found that leaf wax hydrogen isotope fractionation relative to plant source water is best explained by membership in particular lineages, rather than by growth forms as previously suggested. Monocots, and in particular one clade of grasses, display consistently greater hydrogen isotopic fractionation than all other vascular plants, whereas lycopods, representing the earlier-diverging vascular plant lineage, display the smallest fractionation. Data from greenhouse experiments and field samples suggest that the changing leaf wax hydrogen isotopic fractionation in different terrestrial vascular plants may be related to different strategies in allocating photosynthetic substrates for metabolic and biosynthetic functions, and potential leaf water isotopic differences.  相似文献   

5.
The hydrogen isotopic ratios ((2)H/(1)H) of land plant leaf water and the carbon-bound hydrogen of leaf wax lipids are valuable indicators for climatic, physiological, metabolic and geochemical studies. Temperature will exert a profound effect on the stable isotopic composition of leaf water and leaf lipids as it directly influences the isotopic equilibrium (IE) during leaf water evaporation and cellular water dissociation. It is also expected to affect the kinetics of enzymes involved in lipid biosynthesis, and therefore the balance of hydrogen inputs along different biochemical routes. We conducted a controlled growth experiment to examine the effect of temperature on the stable hydrogen isotopic composition of leaf water and the biological and biochemical isotopic fractionations during lipid biosynthesis. We find that leaf water (2)H enrichment at 20°C is lower than that at 30°C. This is contrary to the expectation that at lower temperatures leaf water should be more enriched in (2)H due to a larger equilibrium isotope effect associated with evapotranspiration from the leaf if all other variables are held constant. A hypothesis is presented to explain the apparent discrepancy whereby lower temperature-induced down-regulation of available aquaporin water channels and/or partial closure of transmembrane water channel forces water flow to "detour" to a more convoluted apoplastic pathway, effectively increasing the length over which diffusion acts against advection as described by the Péclet effect (Farquhar and Lloyd, 1993) and decreasing the average leaf water enrichment. The impact of temperature on leaf water enrichment is not reflected in the biological isotopic fractionation or the biochemical isotopic fractionation during lipid biosynthesis. Neither the biological nor biochemical fractionations at 20°C are significantly different from that at 30°C, implying that temperature has a negligible effect on the isotopic fractionation during lipid biosynthesis.  相似文献   

6.
The stable hydrogen (delta(2)H) and oxygen (delta(18)O) isotope ratios of organic and inorganic materials record biological and physical processes through the effects of substrate isotopic composition and fractionations that occur as reactions proceed. At large scales, these processes can exhibit spatial predictability because of the effects of coherent climatic patterns over the Earth's surface. Attempts to model spatial variation in the stable isotope ratios of water have been made for decades. Leaf water has a particular importance for some applications, including plant organic materials that record spatial and temporal climate variability and that may be a source of food for migrating animals. It is also an important source of the variability in the isotopic composition of atmospheric gases. Although efforts to model global-scale leaf water isotope ratio spatial variation have been made (especially of delta(18)O), significant uncertainty remains in models and their execution across spatial domains. We introduce here a Geographic Information System (GIS) approach to the generation of global, spatially-explicit isotope landscapes (= isoscapes) of "climate normal" leaf water isotope ratios. We evaluate the approach and the resulting products by comparison with simulation model outputs and point measurements, where obtainable, over the Earth's surface. The isoscapes were generated using biophysical models of isotope fractionation and spatially continuous precipitation isotope and climate layers as input model drivers. Leaf water delta(18)O isoscapes produced here generally agreed with latitudinal averages from GCM/biophysical model products, as well as mean values from point measurements. These results show global-scale spatial coherence in leaf water isotope ratios, similar to that observed for precipitation and validate the GIS approach to modeling leaf water isotopes. These results demonstrate that relatively simple models of leaf water enrichment combined with spatially continuous precipitation isotope ratio and climate data layers yield accurate global leaf water estimates applicable to important questions in ecology and atmospheric science.  相似文献   

7.
于静洁  李亚飞 《生态学报》2018,38(22):7942-7949
稳定氢氧同位素技术被广泛运用于生态系统、特别是干旱区生态系统中植物水分来源的研究,其理论假设为"水分被植物根系吸收并向木质部运输过程中不发生氢氧同位素分馏"。生态系统中不同水源的氢氧同位素组成普遍存在显著差异,为从水源混合体中区分出各水源的贡献率提供了前提条件。但在实际应用过程中,诸多因素导致稳定氢氧同位素技术定量植物水分来源的结果具有不确定性。综合已有研究并加以分析,举证说明植物吸收水分相对于水源同位素变化的滞后性、水源同位素的季节性变化、蒸发作用和水源之间的混合作用对水源同位素的影响等导致植物水分来源定量结果不确定性的几个因素,以期为今后稳定氢氧同位素技术在植物水分来源领域的应用提供参考。  相似文献   

8.
The carbon, nitrogen and hydrogen stable-isotope contents of nicotine extracted from tobacco leaves were determined by Isotope Ratio Mass Spectrometry (overall 2H, 13C and 15N contents) and by the SNIF-NMR method (site-specific deuterium content). In addition, nicotine was chemically degraded into nicotinic acid so that the intramolecular distribution of carbon and nitrogen isotopes could be studied. A prerequisite for reliable measurements is the use of experimental procedures free of isotopic fractionation. Therefore, it was ensured that isotopic integrity was maintained throughout extraction, purification and chemical degradation steps. The multi-element and multi-site information provided is tentatively interpreted in terms of biochemical isotopic effects on intramolecular distribution patterns and of the influence of environmental factors on nicotine isotopic parameters.  相似文献   

9.
Little is known about the dynamics of concentrations and carbon isotope ratios of individual carbohydrates in leaves in response to climatic and physiological factors. Improved knowledge of the isotopic ratio in sugars will enhance our understanding of the tree ring isotope ratio and will help to decipher environmental conditions in retrospect more reliably. Carbohydrate samples from larch (Larix gmelinii) needles of two sites in the continuous permafrost zone of Siberia with differing growth conditions were analysed with the Compound‐Specific Isotope Analysis (CSIA). We compared concentrations and carbon isotope values (δ13C) of sucrose, fructose, glucose and pinitol combined with phenological data. The results for the variability of the needle carbohydrates show high dynamics with distinct seasonal characteristics between and within the studied years with a clear link to the climatic conditions, particularly vapour pressure deficit. Compound‐specific differences in δ13C values as a response to climate were detected. The δ13C of pinitol, which contributes up to 50% of total soluble carbohydrates, was almost invariant during the whole growing season. Our study provides the first in‐depth characterization of compound‐specific needle carbohydrate isotope variability, identifies involved mechanisms and shows the potential of such results for linking tree physiological responses to different climatic conditions.  相似文献   

10.
稳定同位素技术在植物水分利用研究中的应用   总被引:24,自引:0,他引:24  
近20a稳定同位素技术在植物生态学研究中的应用得到了长足发展,使得对植物与水分关系也有了更深一步的了解。介绍稳定同位素性碳、氢、氧同位素在研究植物水分关系中的应用及进展,以期能为国内植物水分利用研究提供参考。由于植物根系从土壤中吸收水分时并不发生同位素分馏,对木质部水分同位素分析有助于对植物利用水分来源,生态系统中植物对水分的竞争和利用策略的研究,更好地了解生态系统结构与功能。稳定碳同位素作为植物水分利用效率的一个间接指标,在不同水分梯度环境中,及植物不同代谢产物与水分关系中有着广泛的应用。同位素在土壤-植被-大气连续体水分中的应用,有助于了解生态系统的水分平衡。随着稳定同位素方法的使用,植物与水分关系的研究将取得更大的进展。  相似文献   

11.
Heliconius and Laparus butterflies exhibit a unique pollen-collecting behaviour that enhances lifespan and fecundity. The specific nutritional contribution of pollen, however, had not been previously demonstrated. We used stable isotope variation to trace the carbon flow into eggs from corn pollen provided experimentally to ovipositing female Heliconius charitonia, and to evaluate the use of isotopically contrasting nectar sugars in egg amino acids. The delta(13)C of individual amino acids from pollen, larval host plant and the eggs from experimental butterflies was measured with gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), to evaluate amino acid transfer. The delta(13)C of egg essential amino acids indicated a transfer of essential amino acids from pollen to butterfly eggs. However, the delta(13)C of non-essential amino acids reflected the isotopic composition of the artificial nectar, indicating that H. charitonia synthesizes non-essential amino acids from dietary sugars. This, to our knowledge, is the first direct demonstration of amino acid transfer from pollen to butterfly eggs, and suggests that essential amino acids in particular are a key resource for extending lifespan and fecundity in Heliconius butterflies.  相似文献   

12.
Isotopic analyses are now official or standard methods in Europe and North America for routine use in testing the authenticity of several food products. These methods are based on the measurement of stable isotope content (2H, 13C, 18O) of the product or of a specific component such as an ingredient or target molecule of the product. The determinations carried out using nuclear magnetic resonance (NMR), and Isotopic Ratio Mass Spectrometry (IRMS), provide information on the botanical and geographical origin of the food product. A deuterium natural abundance quantitative NMR method (SNIF-NMR: Site-specific Natural Isotope Fractionation) was developed as an efficient and powerful tool capable of characterizing the chemical origins of organic molecules and distinguishing their biological and geographical origin. The SNIF method is based on the measurement of deuterium / hydrogen (D/H) ratios at the specific sites of the ethanol. Using these methods, we present the obtained results for a series of Romanian wines. Our results may be used like reference data set for authenticity and origin control of wines.  相似文献   

13.
Short-term measurement of carbon isotope fractionation in plants   总被引:3,自引:1,他引:2       下载免费PDF全文
Combustion-based studies of the carbon-13 content of plants give only an integrated, long-term value for the isotope fractionation associated with photosynthesis. A method is described here which permits determination of this isotope fractionation in 2 to 3 hours. To accomplish this, the plant is enclosed in a glass chamber, and the quantity and isotopic content of the CO2 remaining in the atmosphere are monitored during photosynthesis. Isotope fractionation studies by this method give results consistent with what is expected from combustion studies of C3, C4, and Crassulacean acid metabolism plants. This method will make possible a variety of new studies of environmental and species effects in carbon isotope fractionation.  相似文献   

14.
Deuterium to hydrogen ratios of 14 plant species from a salt marsh and lagoon were 55‰ depleted in deuterium relative to the environmental water. Carbon tetrachloride-extractable material from these plants was another 92‰ depleted in deuterium. This gave a fractionation factor from water to CCl4 extract of 1.147. This over-all fractionation was remarkably constant for all species analyzed. Plants also discriminate against 13C, particularly in the lipid fraction. Data suggest that different mechanisms for carbon fixation result in different fractionations of the carbon isotopes. Herbivore tissues reflected the isotopic ratios of plants ingested. Apparently different metabolic processes are responsible for the different degrees of fractionation observed for hydrogen and carbon isotopes.  相似文献   

15.
The naturally-occurring stable isotopes deuterium and hydrogen are fractionated by a number of physical and biological processes. Deuterium has a tendency to precipitate out first from a moist air mass. Thus ground water will become isotopically lighter with an increase in latitude, altitude, or distance inland. Water taken up by the plant from the soil undergoes little change until evapotranspiration results in leaf water becoming isotopically heavier. Thus hydrogen isotopes in plants can reveal something of geography (groundwater) and climate. Hydrogen isotopes undergo little fractionation by passage through the food chain, although plant parasites tend to be enriched in D as compared to their hosts, possibly due to higher rates of transpiration in the parasitic plants. The splitting of water in photosynthesis results in the lighter isotope being incorporated into organic matter. An even larger isotopic fractionation results during lipid synthesis and other processes involving the pyruvate dehydrogenase complex. Differences in metabolic pathway between species can be detected by D/H ratios. Hydrogen isotopic differences can be detected between CAM, C4, and C3 species. Within C4 plants, the NADP-ME plants are isotopically distinguishable from NAD-ME and PEP-CK plants.  相似文献   

16.
We performed a global scale analysis of available leaf wax n -alkane δ D data compiled from our new results, as well as from the literature and expressed as average values of D/H ratios from three common lipids of n -alkanes with odd carbon numbers ( n -C27, n -C29, and n -C31) from living higher plants. Our results clearly indicate multiple controls of hydrogen isotope composition and its variability in plants leaf wax. (1) At the global scale, precipitation δ D values play a dominating factor that exercises the first order of control for hydrogen isotopic compositions in plant leaf wax. The hydrogen isotopic composition of plant leaf wax tracks the decreasing trend of precipitation δ D with increasing latitude. (2) Because of different water acquisition systems, plant life form influences the hydrogen isotopic composition of leaf wax n -alkanes with woody plants and grasses having different responses to the change of global precipitation δ D. (3) Physiological difference, due to different photosynthesis pathways or different water usage strategies, can leave an imprint on δ D patterns of plant leaf waxes, causing δ D variations among plants using the same source water. While these results better explain the variability of hydrogen isotope composition in leaf wax, they also have important implications for the interpretation of n -alkane δ D data from fossils and ancient sediments.  相似文献   

17.
The relationship between water temperature, growth rate, and otolith isotopic ratios was measured for juvenile plaice (Pleuronectes platessa) reared at two temperatures (11 and 17°C) and two feeding regimes (1 and 3 prey items·ml?1). The otolith isotope ratios in individual fish ranged from ?2 to ?4 for carbon isotope ratios (δ13C) and from 0.2 to 1.9 for oxygen isotope ratios (δ18O). The otolith oxygen isotope ratios were significantly affected by water temperature, but not by feeding level, and there were no significant synergistic effects. The fractionation of oxygen isotopes during otolith growth was independent of individual growth rate. Carbon isotope ratios were not significantly affected by food ration or water temperature, but were related to fish growth rate. The carbon isotope ratios were negatively correlated with fish length in the colder water treatments, and tended to increase with fish length in the warm water treatments. The laboratory-determined relationship between otolith oxygen isotope ratio and water temperature was applied to individuals of five species (plaice, cod, whiting, haddock, gurnard) collected in a single trawl sample. The otolith derived temperatures often overestimated measured water temperatures. The difference between real and estimated water temperatures varied between species, and the closest fit was for field-caught plaice.  相似文献   

18.
Li Gao  Yongsong Huang 《Oecologia》2013,172(2):347-357
Compound specific hydrogen and carbon isotopic ratios of higher plant leaf waxes have been extensively used in paleoclimate and paleoenvironmental reconstructions. However, studies so far have focused on the comparison of leaf wax isotopic differences in bulk leaf samples between different plant species. We sampled three different varieties of tall grasses (Miscanthus sinensis) in six segments from base to tip and determined hydrogen and carbon isotopic ratios of leaf waxes, as well as hydrogen and oxygen isotopic ratios of leaf water samples. We found an increasing, base-to-tip hydrogen isotopic gradient along the grass blades that can probably be attributed to active leaf wax regeneration over the growth season. Carbon isotopic ratios, on the other hand, show opposite trends to hydrogen isotopic ratios along the grass blades, which may reflect different photosynthetic efficiencies at different blade locales.  相似文献   

19.
树轮木质素甲氧基稳定氢同位素比率测定方法研究进展   总被引:1,自引:0,他引:1  
在森林树木合成的有机化合物中,氢元素(H)主要源于大汽水,经植物光合与生理代谢参与生物地球化学循环。近年来,树轮木质素甲氧基稳定氢同位素比率(δ2HLM)作为新的古气候和古环境研究的代用指标,重建了多个地区的降水稳定同位素比率及气候变化信息,展现了其特有的优势。本文综述了现有树轮δ2HLM测定的详细分析方法和基本原理,从树轮木质素含量、单体组成等方面对树轮δ2HLM测定方法的稳定性和有效性进行评价,阐述了树轮木质素甲氧基稳定同位素指标现有研究成果。中纬度地区森林树轮δ2HLM在记录气温变化和降水稳定同位素变化等方面有着巨大的潜力。但是树轮δ2HLM的研究尚处于起步阶段,主要表现为: 1) 研究区局限于北半球中纬度地区,研究对象局限于针叶树种;2) 高分辨率树轮δ2HLM研究有待开展,以弥补硝化纤维稳定氢同位素记录的局限;3) 树轮δ2HLM在植物生理和森林生态研究方面的潜力有待开发。  相似文献   

20.
Lemna gibba L. B3 was grown under heterotrophic, photoheterotrophic, and autotrophic conditions in water having a variety of hydrogen and oxygen isotopic compositions. The slopes of the linear regression lines between the isotopic composition of water and leaf cellulose indicated that under the three growth conditions about 40, 70, and 100% of oxygens and carbon-bound hydrogens of cellulose exchanged with those of water prior to cellulose formation. Using the equations of the linear relationships, we estimated the overall fractionation factors between water and the exchanged oxygen and carbon bound-hydrogen of cellulose. At least two very different isotope effects must determine the hydrogen isotopic composition of Lemna cellulose. One reflects the photosynthetic reduction of NADP, while the second reflects exchange reactions that occur subsequent to NADP reduction. Oxygen isotopic composition of cellulose apparently is determined by a single type of exchange reaction with water. Under different growth conditions, variations in metabolic fluxes affect the hydrogen isotopic composition of cellulose by influencing the extent to which the two isotope effects mentioned above are recorded. The oxygen isotopic composition of cellulose is not affected by such changes in growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号