首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sourdough lactic acid bacteria were preliminarily screened for proteolytic activity by using a digest of albumin and globulin polypeptides as a substrate. Based on their hydrolysis profile patterns, Lactobacillus alimentarius 15M, Lactobacillus brevis 14G, Lactobacillus sanfranciscensis 7A, and Lactobacillus hilgardii 51B were selected and used in sourdough fermentation. A fractionated method of protein extraction and subsequent two-dimensional electrophoresis were used to estimate proteolysis in sourdoughs. Compared to a chemically acidified (pH 4.4) dough, 37 to 42 polypeptides, distributed over a wide range of pIs and molecular masses, were hydrolyzed by L. alimentarius 15M, L. brevis 14G, and L. sanfranciscensis 7A. Albumin, globulin, and gliadin fractions were hydrolyzed, while glutenins were not degraded. The concentrations of free amino acids, especially proline and glutamic and aspartic acids, also increased in sourdoughs. Compared to the chemically acidified dough, proteolysis by lactobacilli positively influenced the softening of the dough during fermentation, as determined by rheological analyses. Enzyme preparations of the selected lactobacilli which contained proteinase or peptidase enzymes showed hydrolysis of the 31-43 fragment of A-gliadin, a toxic peptide for celiac patients. A toxic peptic-tryptic (PT) digest of gliadins was used for in vitro agglutination tests on K 562 (S) subclone cells of human myelagenous leukemia origin. The lowest concentration of PT digest that agglutinated 100% of the total cells was 0.218 g/liter. Hydrolysis of the PT digest by proteolytic enzymes of L. alimentarius 15M and L. brevis 14G completely prevented agglutination of the K 562 (S) cells by the PT digest at a concentration of 0.875 g/liter. Considerable inhibitory effects by other strains and at higher concentrations of the PT digest were also found. The mixture of peptides produced by enzyme preparations of selected lactobacilli showed a decreased agglutination of K 562 (S) cells with respect to the whole 31-43 fragment of A-gliadin.  相似文献   

2.
The effect of the glutathione reductase (GshR) activity of Lactobacillus sanfranciscensis DSM20451(T) on the thiol levels in fermented sourdoughs was determined, and the oxygen tolerance of the strain was also determined. The gshR gene coding for a putative GshR was sequenced and inactivated by single-crossover integration to yield strain L. sanfranciscensis DSM20451(T)DeltagshR. The gene disruption was verified by sequencing the truncated gshR and surrounding regions on the chromosome. The gshR activity of L. sanfranciscensis DSM20451(T)DeltagshR was strongly reduced compared to that of the wild-type strain, demonstrating that gshR indeed encodes an active GshR enzyme. The thiol levels in wheat doughs fermented with L. sanfranciscensis DSM20451 increased from 9 microM to 10.5 microM sulfhydryl/g of dough during a 24-h sourdough fermentation, but in sourdoughs fermented with L. sanfranciscensis DSM20451(T)DeltagshR and in chemically acidified doughs, the thiol levels decreased to 6.5 to 6.8 microM sulfhydryl/g of dough. Remarkably, the GshR-negative strains Lactobacillus pontis LTH2587 and Lactobacillus reuteri BR11 exerted effects on thiol levels in dough comparable to those of L. sanfranciscensis. In addition to the effect on thiol levels in sourdough, the loss of GshR activity in L. sanfranciscensis DSM20451(T)DeltagshR resulted in a loss of oxygen tolerance. The gshR mutant strain exhibited a strongly decreased aerobic growth rate on modified MRS medium compared to either the growth rate under anaerobic conditions or that of the wild-type strain, and aerobic growth was restored by the addition of cysteine. Moreover, the gshR mutant strain was more sensitive to the superoxide-generating agent paraquat.  相似文献   

3.
AIMS: Five different sourdoughs were investigated for the composition of lactic acid bacteria (LAB) and the biodiversity of Lactobacillus sanfranciscensis strains. METHODS AND RESULTS: A total of 57 strains were isolated from five sourdoughs. Isolated strains were all identified by the 16S rDNA sequence and species-specific primers for L. sanfranciscensis. Results of identification showed that LAB strains were L. sanfranciscensis, Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus fermentum, Lactobacillus pontis, Lactobacillus casei, Weisella confusa and Pediococcus pentosaceus. A total of 21 strains were identified as L. sanfranciscensis and these isolates were detected in all five sourdoughs. Ribotyping was applied to investigate the relationship between intraspecies diversity of L. sanfranciscensis and sourdough. A total of 22 strains of L. sanfranciscensis including L. sanfranciscensis JCM 5668T were compared by ribotyping. The dendrogram of 21 ribotyping patterns showed four clusters, and L. sanfranciscensis JCM 5668T was independent of the others. The different biotypes of L. sanfranciscensis were present in two sourdoughs compared with other three sourdoughs. CONCLUSIONS: The LAB compositions of five sourdoughs were different and the relationship between intraspecies diversity of L. sanfranciscensis strains and five sourdoughs was shown by ribotyping. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated that ribotyping was useful for distinguishing L. sanfranciscensis strains. A further important result is that the intra-species diversity of L. sanfranciscensis strains seems to be related to the sourdough preparation.  相似文献   

4.
AIMS: To study the microbial communities in artisanal sourdoughs, manufactured by traditional procedure in different areas of Sicily, and to evaluate the lactic acid bacteria (LAB) population by classical and culture-independent approaches. METHODS AND RESULTS: Forty-five LAB isolates were identified both by phenotypic and molecular methods. The restriction fragment length polymorphism and 16S ribosomal DNA gene sequencing gave evidence of a variety of species with the dominance of Lactobacillus sanfranciscensis and Lactobacillus pentosus, in all sourdoughs tested. Culture-independent method, such as denaturing gradient gel electrophoresis (DGGE) of the V6-V8 regions of the 16S rDNA, was applied for microbial community fingerprint. The DGGE profiles revealed the dominance of L. sanfranciscensis species. In addition, Lactobacillus-specific primers were used to amplify the V1-V3 regions of the 16S rDNA. DGGE profiles flourished the dominance of L. sanfranciscensis and Lactobacillus fermentum in the traditional sourdoughs, and revealed that the closely related species Lactobacillus kimchii and Lactobacillus alimentarius were not discriminated. CONCLUSIONS: Lactobacillus-specific PCR-DGGE analysis is a rapid tool for rapid detection of Lactobacillus species in artisanal sourdough. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reports a characterization of Lactobacillus isolates from artisanal sourdoughs and highlights the value of DGGE approach to detect uncultivable Lactobacillus species.  相似文献   

5.
Protein hydrolysis and amino acid metabolism contribute to the beneficial effects of sourdough fermentation on bread quality. In this work, genes of Lactobacillus sanfranciscensis strain DSM 20451 involved in peptide uptake and hydrolysis were identified and their expression during growth in sourdough was determined. Screening of the L. sanfranciscensis genome with degenerate primers targeting prt and analysis of proteolytic activity in vitro provided no indication for proteolytic activity. Proteolysis in aseptic doughs and sourdoughs fermented with L. sanfranciscensis was inhibited upon the addition of an aspartic protease inhibitor. These results indicate that proteolysis was not linked to the presence of L. sanfranciscensis DSM 20451 and that this strain does not harbor a proteinase. Genes encoding the peptide transport systems Opp and DtpT and the intracellular peptidases PepT, PepR, PepC, PepN, and PepX were identified. Both peptide uptake systems and the genes pepN, pepX, pepC, and pepT were expressed by L. sanfranciscensis growing exponentially in sourdough, whereas pepX was not transcribed. The regulation of the expression of Opp, DtpT, and PepT during growth of L. sanfranciscensis in sourdough was investigated. Expression of Opp and DtpT was reduced approximately 17-fold when the peptide supply in dough was increased. The expression of PepT was dependent on the peptide supply to a lesser extent. Thus, the accumulation of amino nitrogen by L. sanfranciscensis in dough is attributable to peptide hydrolysis rather than proteolysis and amino acid metabolism by L. sanfranciscensis during growth in sourdough is limited by the peptide availability.  相似文献   

6.
AIMS: It was the aim of our work to investigate glutamine deamidation by lactic acid bacteria isolated from cereal fermentations and to elucidate the ecological and technological relevance in baking of the conversion of glutamine to glutamate. METHODS AND RESULTS: Lactobacillus sanfranciscensis and Lact. reuteri were found to display glutaminase activity. The addition of glutamine to modified Man, Rogosa and Sharp medium increased the cell yields of Lact. sanfranciscensis, as well as the production of lactic and acetic acid. The final pH; however, was increased in the glutamine-containing medium. The addition of 47 mmol kg(-1) glutamate to chemically acidified doughs significantly changed the bread flavour. In sourdoughs with enhanced proteolytic activity, strain-dependent production of 27-120 mmol glutamate per kilogram sourdough was observed. CONCLUSIONS: Lactobacillus sanfranciscensis and Lact. reuteri converted glutamine into glutamate; this conversion improves the acid tolerance of lactobacilli and significantly influences wheat bread flavour. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper illustrates the complex interaction of sourdough-lactobacilli with their environment: the flour provides substrates for metabolic activities that enable the lactobacilli to reach higher cell counts, and the produced metabolite may be one of the reasons why the flavour of fermented breads is different to the flavour of chemically acidified breads.  相似文献   

7.
The cytoplasmic extracts of 70 strains of the most frequently isolated sourdough lactic acid bacteria were screened initially for arginine deiminase (ADI), ornithine transcarbamoylase (OTC), and carbamate kinase (CK) activities, which comprise the ADI (or arginine dihydrolase) pathway. Only obligately heterofermentative strains such as Lactobacillus sanfranciscensis CB1; Lactobacillus brevis AM1, AM8, and 10A; Lactobacillus hilgardii 51B; and Lactobacillus fructivorans DD3 and DA106 showed all three enzyme activities. Lactobacillus plantarum B14 did not show CK activity. L. sanfranciscensis CB1 showed the highest activities, and the three enzymes were purified from this microorganism to homogeneity by several chromatographic steps. ADI, OTC, and CK had apparent molecular masses of ca. 46, 39, and 37 kDa, respectively, and the pIs were in the range of 5.07 to 5.2. The OTCs, CKs, and especially ADIs were well adapted to pH (acidic, pH 3.5 to 4.5) and temperature (30 to 37 degrees C) conditions which are usually found during sourdough fermentation. Internal peptide sequences of the three enzymes had the highest level of homology with ADI, OTC, and CK of Lactobacillus sakei. L. sanfranciscensis CB1 expressed the ADI pathway either on MAM broth containing 17 mM arginine or during sourdough fermentation with 1 to 43 mM added arginine. Two-dimensional electrophoresis showed that ADI, OTC, and CK were induced by factors of ca. 10, 4, and 2 in the whole-cell extract of cells grown in MAM broth containing 17 mM arginine compared to cells cultivated without arginine. Arginine catabolism in L. sanfranciscensis CB1 depended on the presence of a carbon source and arginine; glucose at up to ca. 54 mM did not exert an inhibitory effect, and the pH was not relevant for induction. The pH of sourdoughs fermented by L. sanfranciscensis CB1 was dependent on the amount of arginine added to the dough. A low supply of arginine (6 mM) during sourdough fermentation by L. sanfranciscensis CB1 enhanced cell growth, cell survival during storage at 7 degrees C, and tolerance to acid environmental stress and favored the production of ornithine, which is an important precursor of crust aroma compounds.  相似文献   

8.
The mechanisms of cell-cell communication in Lactobacillus sanfranciscensis CB1 were studied. The highest number of dead/damaged cells of L. sanfranciscensis CB1 was found in cocultures with Lactobacillus plantarum DC400 or Lactobacillus brevis CR13 when the late stationary phase of growth (18 h) was reached. 2-DE analysis was carried out. Almost the same proteins were induced in all three cocultures at the mid-exponential phase of growth (7 h). The number of induced proteins markedly increased at 18 h, especially when L. sanfranciscensis CB1 was cocultured with L. plantarum DC400 or L. brevis CR13. Nineteen overexpressed proteins were identified. These proteins had a central role in stress response mechanisms and LuxS-mediated signalling was involved in the regulation of most of them. The luxS and metF genes were partially sequenced in L. sanfranciscensis CB1. RT-PCR showed that the expression of luxS gene decreased from 7 to 12 h. It was highest in cocultures with L. plantarum DC400 and L. brevis CR13. 2(3H)dihydrofuranone-5ethyl and 2(3H)dihydrofuranone-5pentyl were identified as presumptive signalling molecules when L. sanfranciscensis CB1 was cocultured with L. brevis CR13 and, especially, L. plantarum DC400. The synthesis of other volatile compounds and peptidase activities were also influenced by the type of microbial cocultures.  相似文献   

9.
AIMS: The organization of ribosomal RNA (rrn) operons in Lactobacillus sanfranciscensis was studied in order to establish an easy-to-perform method for identification of L. sanfranciscensis strains, based on the length and sequence polymorphism of the 16S-23S rDNA intergenic spacer region (ISR). METHODS AND RESULTS: PCR amplification of the 16S-23S rDNA ISRs of L. sanfranciscensis gave three products distinguishing this micro-organism from the remaining Lactobacillus species. Sequence analysis revealed that two of the rrn operons were organized as in previously reported lactobacilli: large spacer (L-ISR), containing tRNA(Ile) and tRNA(Ala) genes; small spacer (S-ISR) without tRNA genes. The third described spacer (medium, M-ISR), original for L. sanfranciscensis, harboured a tRNA-like structure. An oligonucleotide sequence targeting the variable region between tDNA(Ile) and tDNA(Ala) of L. sanfranciscensis L-ISR was approved to be suitable in species-specific identification procedure. Analysis by pulse-field gel electrophoresis of the chromosomal digest with the enzyme I-CeuI showed the presence of seven rrn clusters. Lactobacillus sanfranciscensis genome size was estimated at c. 1.3 Mb. CONCLUSIONS: Direct amplification of 16S-23S ISRs or PCR with specific primer derived from L-ISR showed to be useful for specific typing of L. sanfranciscensis. This was due to the specific rrn operon organization of L. sanfranciscensis strains. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have reported a rapid procedure for L. sanfranciscensis identification based on specific structures found in its rrn operon.  相似文献   

10.
The ability of lactic acid bacteria (LAB) to produce phenyllactic (PLA) and 4-hydroxy-phenyllactic (OH-PLA) acids, metabolites involved in food quality and preservation, has been evaluated by HPLC analysis in 29 LAB strains belonging to 12 species widely used in the production of fermented foods. Metabolite production was demonstrated for all strains of the species Lactobacillus plantarum, Lactobacillus alimentarius, Lactobacillus rhamnosus, Lactobacillus sanfranciscensis, Lactobacillus hilgardii, Leuconostoc citreum, and for some strains of Lactobacillus brevis, Lactobacillus acidophilus and Leuconostoc mesenteroides subsp. mesenteroides. Strains were distinguished by analysis of variance in three groups including 15 strains that produced both metabolites (0.16-0.46 mM PLA and 0.07-0.29 mM OH-PLA), five strains accumulating in culture only PLA (0.17-0.57 mM) and nine non-producer strains (< or = 0.10 mM PLA and < or = 0.02 mM OH-PLA). Improvement of phenyllactic acid production was obtained in a selected L. plantarum strain by increasing the concentration of phenylalanine in culture and using low amounts of tyrosine.  相似文献   

11.
Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactobacillus sanfranciscensis, Lactobacillus brevis, Lactobacillus paralimentarius, and Weissella cibaria. This consortium seems to be unique for the Greek traditional wheat sourdoughs studied. Strains of the species W. cibaria have not been isolated from sourdoughs previously. No Lactobacillus pontis or Lactobacillus panis strains were found. An L. brevis-like isolate (ACA-DC 3411 t1) could not be identified properly and might be a new sourdough LAB species. In addition, fermentation capabilities associated with the LAB detected have been studied. During laboratory fermentations, all heterofermentative sourdough LAB strains produced lactic acid, acetic acid, and ethanol. Mannitol was produced from fructose that served as an additional electron acceptor. In addition to glucose, almost all of the LAB isolates fermented maltose, while fructose as the sole carbohydrate source was fermented by all sourdough LAB tested except L. sanfranciscensis. Two of the L. paralimentarius isolates tested did not ferment maltose; all strains were homofermentative. In the presence of both maltose and fructose in the medium, induction of hexokinase activity occurred in all sourdough LAB species mentioned above, explaining why no glucose accumulation was found extracellularly. No maltose phosphorylase activity was found either. These data produced a variable fermentation coefficient and a unique sourdough metabolite composition.  相似文献   

12.
Genetic diversity of Lactobacillus sanfranciscensis strains isolated from naturally fermented sourdoughs of different origin was evaluated by using randomly amplified polymorphic DNA (RAPD). Computer-assisted comparison of the RAPD patterns revealed a clear separation of L. sanfranciscensis from other obligately heterofermentative Lactobacillus species closely related or normally present in sourdough. Six clusters, five of them constituted by strains of the same origin, were recognized at a similarity level of 63%. Pulsed-field gel electrophoresis (PFGE) results on strains chosen as representative were generally in good agreement with the grouping obtained by RAPD. Both techniques showed a high degree of discriminatory power and indicated the existence of a remarkable genetic polymorphism within the species. Furthermore, the chromosome size of L. sanfranciscensis was estimated by PFGE to be about 1.4 Mb.  相似文献   

13.
Aims:  To study lactic acid bacteria (LAB) and yeast dynamics during the production processes of sweet-leavened goods manufactured with type I sourdoughs.
Methods and Results:  Fourteen sourdough and dough samples were taken from a baking company in central Italy during the production lines of three varieties of Panettone. The samples underwent pH measurements and plating analysis on three solid media. The microbial DNA was extracted from both the (sour)doughs and the viable LAB and yeast cells collected in bulk, and subjected to PCR-denaturing gradient gel electrophoresis (DGGE) analysis. The molecular fingerprinting of the cultivable plus noncultivable microbial populations provide evidence of the dominance of Lactobacillus sanfranciscensis , Lactobacillus brevis and Candida humilis in the three fermentation processes. The DGGE profiles of the cultivable communities reveal a bacterial shift in the final stages of two of the production processes, suggesting an effect of technological parameters on the selection of the dough microflora.
Conclusions:  Our findings confirm the importance of using a combined analytical approach to explore microbial communities that develop during the leavening process of sweet-leavened goods.
Significance and Impact of the Study:  In-depth studies of sourdough biodiversity and population dynamics occurring during sourdough fermentation are fundamental for the control of the leavening process and the manufacture of standardized, high-quality products.  相似文献   

14.
AIMS: To identify and characterize bacteriocion-producing lactic acid bacteria (LAB) in sourdoughs and to compare in vitro and in situ bacteriocin activity of sourdough- and nonsourdough LAB. METHODS AND RESULTS: Production of antimicrobial compounds by 437 Lactobacillus strains isolated from 70 sourdoughs was investigated. Five strains (Lactobacillus pentosus 2MF8 and 8CF, Lb. plantarum 4DE and 3DM and Lactobacillus spp. CS1) were found to produce distinct bacteriocin-like inhibitory substances (BLIS). BLIS-producing Lactococcus lactis isolated from raw barley showed a wider inhibitory spectrum than sourdough LAB, but they did not inhibit all strains of the key sourdough bacterium Lb. sanfranciscensis. Antimicrobial production by Lb. pentosus 2MF8 and Lc. lactis M30 was also demonstrated in situ. CONCLUSIONS: BLIS production by sourdough LAB appears to occur at a low frequency, showing limited inhibitory spectrum when compared with BLIS-producing Lc. lactis. Nevertheless, they are active BLIS producers under sourdough and bread-making conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The activity of BLIS has been demonstrated in situ. It may influence the complex sourdough microflora and support the implantation and stability of selected insensitive bacteria, such as Lb. sanfranciscensis, useful to confer good characteristics to the dough.  相似文献   

15.
AIMS: The metabolism by bifidobacteria of exopolysaccharide (EPS) produced by Lactobacillus sanfranciscensis was investigated. To evaluate the significance of the EPS produced by Lact. sanfranciscensis during dough fermentation on the overall prebiotic properties of bread, metabolism by bifidobacteria of water-soluble polysaccharides (WSP) from wheat and rye was investigated. METHODS AND RESULTS: Polyglucose and polyfructan contained in WSP from wheat and rye were metabolized by bifidobacteria. In contrast, WSP isolated from fermented doughs were not metabolized by bifidobacteria. The arabioxylan fraction of WSP was metabolized neither by bifidobacteria nor by lactobacilli. All the bifidobacteria tested were able to metabolize fructan from Lact. sanfranciscensis. The kinetics of EPS metabolism by various bifidobacteria were characterized by diauxic utilization of fructose and EPS. CONCLUSIONS: Bifidobacteria metabolize fructan from Lact. sanfranciscensis. Polyfructan and the starch fractions from wheat and rye, which possess a bifidogenic effect, were degraded by cereal enzymes during dough fermentation, while the EPS were retained. SIGNIFICANCE AND IMPACT OF THE STUDY: EPS produced by sourdough lactic acid bacteria will improve the nutritional properties of sourdough fermented products.  相似文献   

16.
Four sourdoughs (A to D) were produced under practical conditions by using a starter mixture of three commercially available sourdough starters and a baker's yeast constitutively containing various species of lactic acid bacteria (LAB). The sourdoughs were continuously propagated until the composition of the LAB flora remained stable. Two LAB-specific PCR-denaturing gradient gel electrophoresis (DGGE) systems were established and used to monitor the development of the microflora. Depending on the prevailing ecological conditions in the different sourdough fermentations, only a few Lactobacillus species were found to be competitive and became dominant. In sourdough A (traditional process with rye flour), Lactobacillus sanfranciscensis and a new species, L. mindensis, were detected. In rye flour sourdoughs B and C, which differed in the process temperature, exclusively L. crispatus and L. pontis became the predominant species in sourdough B and L. crispatus, L. panis, and L. frumenti became the predominant species in sourdough C. On the other hand, in sourdough D (corresponding to sourdough C but produced with rye bran), L. johnsonii and L. reuteri were found. The results of PCR-DGGE were consistent with those obtained by culturing, except for sourdough B, in which L. fermentum was also detected. Isolates of the species L. sanfranciscensis and L. fermentum were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively.  相似文献   

17.
Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs.The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.  相似文献   

18.
The objective of this work was to investigate the structure and diversity of lactic acid bacteria (LAB) communities in sourdough used for the production of traditional breads (Carasau, Moddizzosu, Spianata, Zichi) in Sardinia. 16S rDNA sequencing and Randomly Amplified Polymorphic DNA (RAPD-PCR) was applied for the identification and typing of the LAB isolated from 25 samples of sourdoughs. Multivariate statistical techniques were applied to RAPD-PCR pattern to study the biological diversity of sourdough samples. Twelve different species of LAB were identified, and most isolates were classified as facultative heterofermentative lactobacilli. Lactobacillus pentosus dominated the lactic microflora of many samples while Lactobacillus sanfranciscensis was isolated only from a limited number of samples. Although heterofermentative species represented between between 30% and 60% of the isolates in Carasau, Spianata and Zichi sourdoughs, only 2% of the isolates from Moddizzosu sourdoughs were identified as heterofermentative LAB. RAPD-PCR with a single primer followed by cluster analysis did not allow the identification of the isolates at the species level. However, a multidimensional scaling/bootstrapping approach on the RAPD-PCR patterns uncovered the diversity of the LAB communities of LAB showing differences both within and between bread types.  相似文献   

19.
The PT-digest of bread wheat gliadin was very active in agglutinating undifferentiated human K562(S) cells. This activity was quantitatively, but not qualitatively, similar to that of Con A or WGA. Moreover, Con A-induced cell agglutination was inhibited by mannan and mannose, WGA-induced agglutination by NAG only, and cell agglutination induced by bread wheat gliadin peptides was inhibited by each of these three saccharides. Not only was mannan the most active saccharide in preventing cell agglutination induced by bread wheat gliadin peptides, but it was also able to dissociate agglutinated cells. As compared to the PT- digest of whole bread wheat gliadin, the digest obtained from purified A-gliadin was tenfold more active. The PT-digest of durum wheat gliadin did not show any agglutinating activity.  相似文献   

20.
This work was aimed at producing a sourdough bread that is tolerated by celiac sprue (CS) patients. Selected sourdough lactobacilli had specialized peptidases capable of hydrolyzing Pro-rich peptides, including the 33-mer peptide, the most potent inducer of gut-derived human T-cell lines in CS patients. This epitope, the most important in CS, was hydrolyzed completely after treatment with cells and their cytoplasmic extracts (CE). A sourdough made from a mixture of wheat (30%) and nontoxic oat, millet, and buckwheat flours was started with lactobacilli. After 24 h of fermentation, wheat gliadins and low-molecular-mass, alcohol-soluble polypeptides were hydrolyzed almost totally. Proteins were extracted from sourdough and used to produce a peptic-tryptic digest for in vitro agglutination tests on K 562(S) subclone cells of human origin. The minimal agglutinating activity was ca. 250 times higher than that of doughs chemically acidified or started with baker's yeast. Two types of bread, containing ca. 2 g of gluten, were produced with baker's yeast or lactobacilli and CE and used for an in vivo double-blind acute challenge of CS patients. Thirteen of the 17 patients showed a marked alteration of intestinal permeability after ingestion of baker's yeast bread. When fed the sourdough bread, the same 13 patients had values for excreted rhamnose and lactulose that did not differ significantly from the baseline values. The other 4 of the 17 CS patients did not respond to gluten after ingesting the baker's yeast or sourdough bread. These results showed that a bread biotechnology that uses selected lactobacilli, nontoxic flours, and a long fermentation time is a novel tool for decreasing the level of gluten intolerance in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号