首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Optimal T-cell activation depends on the antigen-specific signal mediated by the TCR and engagement of costimulatory receptors such as CD28. CTLA-4, a homologous counterpart of CD28, is considered to be a crucial inhibitory receptor. To test its function separately from CD28 in an antigen-driven and ligand-specific model, we stably transfected the T-cell hybridomas A1.1 and DO11.10, which lack significant endogenous CD28 or CTLA-4 expression, with wild-type CTLA-4 (CTLA-4 WT) and a construct lacking the cytoplasmic tail (tailless [TL]). Functional studies were carried out by co-incubation with APC expressing the B7 ligands for CTLA-4 and appropriate MHC molecules loaded with their cognate antigens. IL-2 production on costimulation of CTLA-4WT and TCR did not differ significantly from untransfected controls. However, coligation of TCR and CTLA-4TL resulted in a vigorous IL-2 response specific for the interaction of CTLA-4 with B7. Thus, lack of the cytoplasmic tail converted CTLA-4 into a costimulatory receptor. This indicates that the CTLA-4 inhibitory function may not be attributable to sequestration of the common B7 ligands when competing with CD28. Rather, ligation of B7 by the CTLA-4 extracellular domain can enhance TCR activation, whereas in the full-length receptor, inhibitory signals mediated by the cytoplasmic domain may override this activation.  相似文献   

2.
CTLA-4 is an important inhibitor of T cell activation. We used Jurkat cells expressing mutants of murine CTLA-4 to study the structural requirements for inhibitory signaling. We find that signals for the inhibition of IL-2 secretion are delivered efficiently by a CTLA-4 mutant in which both cytoplasmic tyrosines have been replaced by phenylalanines. A CTLA-4 mutant that lacks the carboxyl-terminal half of the intracellular domain also retains the ability to inhibit, but deletion of an additional 11 aa completely abrogates that capability. We conclude that delivery of an inhibitory signal requires the membrane-proximal region of the CTLA-4 cytoplasmic domain and does not depend upon the tyrosine phosphorylation of CTLA-4.  相似文献   

3.
Abs or their recombinant fragments against surface receptors of the Ig superfamily can induce or block the receptors' native function depending on whether they induce or prevent the assembly of signalosomes on their cytoplasmic tails. In this study, we introduce a novel paradigm based on the observation that a bispecific tandem single-chain variable region fragment ligand of CTLA-4 by itself converts this inhibitory receptor into an activating receptor for primary human T lymphocytes. This reversal of function results from increased recruitment of the serine/threonine phosphatase 2A to the cytoplasmic tail of CTLA-4, consistent with a role of this phosphatase in the regulation of CTLA-4 function, and assembly of a distinct signalosome that activates an lck-dependent signaling cascade and induces IL-2 production. Our data demonstrate that the cytoplasmic domain of CTLA-4 has an inherent plasticity for signaling that can be exploited therapeutically with recombinant ligands for this receptor.  相似文献   

4.
B7-independent inhibition of T cells by CTLA-4   总被引:4,自引:0,他引:4  
CTLA-4 is an inhibitory molecule that regulates T cell expansion and differentiation. CTLA-4 binding to B7-1/B7-2 is believed to be crucial for its inhibitory signal both by competing for CD28 binding to the same ligands and aggregating CTLA-4 to deliver negative signals. In this study, we demonstrate that B7 binding is not essential for CTLA-4 activity. CTLA-4 knockout T cells are hyperresponsive compared with wild-type T cells in B7-free settings. Expression of a B7-nonbinding CTLA-4 mutant inhibited T cell proliferation, cytokine production, and TCR-mediated ERK activation in otherwise CTLA-4-deficient T cells. Finally, transgenic expression of the ligand-nonbinding CTLA-4 mutant delayed the lethal lymphoproliferation observed in CTLA-4-deficient mice. These results suggest that ligand binding is not essential for the CTLA-4 function and supports an essential role for CTLA-4 signaling during T cell activation.  相似文献   

5.
Structural requirements for CD43 function   总被引:2,自引:0,他引:2  
The regulation of T cell activation and adhesion by CD43 (leukosialin, sialophorin) has been thought to be mainly a function of the large size and negative charge of the extracellular domain of the protein. In this work, we demonstrate that the cytoplasmic tail is both necessary and sufficient for the negative regulatory effect of CD43 on cell-cell adhesion. Expression of mutant CD43 proteins in primary T cells from CD43-deficient mice demonstrated that the antiproliferative effect of CD43 is also dependent upon the cytoplasmic tail. In contrast, Ab-mediated costimulation through CD43 does not require the intracellular domain of CD43. These data demonstrate that CD43 primarily serves as a negative regulator of T cell activation and adhesion, and that this is mediated not exclusively by passive effects of the extracellular domain, but requires participation of the cytoplasmic tail, perhaps through interactions with the cytoskeleton, or alternatively, active regulation of intracellular signaling pathways.  相似文献   

6.
Immunosuppression by UV light contributes significantly to the induction of skin cancer by suppressing the cell-mediated immune responses which control the development of carcinogenesis. The B7/CD28-CTLA-4 signaling pathway provides costimulatory signals essential for Ag-specific T cell activation. To investigate the role of this pathway in photocarcinogenesis, we utilized transgenic (Tg) mice which constitutively express CTLA-4Ig, a high-affinity CD28/CTLA-4 antagonist that binds to both B7-1 and B7-2. The transgene is driven by a skin-specific promoter yielding high levels of CTLA-4Ig in the skin and serum. Chronic UV exposure of CTLA-4Ig Tg mice resulted in significantly reduced numbers of skin tumors, when compared to control mice. In addition, Tg mice were resistant to UV-induced suppression of delayed-type hypersensitivity responses to alloantigens. Most importantly, upon stimulation with mitogens and alloantigens, T cells isolated from CTLA-4Ig Tg mice produced significantly less IL-4 but more IFN-gamma compared to control T cells, suggesting an impaired Th2 response and a relative increase of Th1-type immunity. Together, these data show that overall B7 engagement directs immune responses toward the Th2 pathway. Moreover, they point out the crucial role of Th1 immune reactions in the protection against photocarcinogenesis.  相似文献   

7.
The Src family tyrosine kinase Hck possesses two phosphorylation sites, Tyr(527) and Tyr(416), that affect the catalytic activity in opposite ways. When phosphorylated, Tyr(527) and residues C-terminal to it are involved in an inhibitory intramolecular interaction with the SH2 domain. However, this sequence does not conform to the sequence of the high affinity SH2 ligand, pYEEI. We mutated this sequence to YEEI and show that this mutant form of Hck cannot be activated by exogenous SH2 ligands. The SH3 domain of Hck is also involved in an inhibitory interaction with the catalytic domain. The SH3 ligand Nef binds to and activates YEEI-Hck mutant in a similar manner to wild-type Hck, indicating that disrupting the SH3 interaction overrides the strengthened SH2 interaction. The other phosphorylation site, Tyr(416), is the autophosphorylation site in the activation loop. Phosphorylation of Tyr(416) is required for Hck activation. We mutated this residue to alanine and characterized its catalytic activity. The Y416A mutant shows a higher K(m) value for peptide and a lower V(max) than autophosphorylated wild-type Hck. We also present evidence for cross-talk between the activation loop and the intramolecular binding of the SH2 and SH3 domains.  相似文献   

8.
9.
The role of CTLA-4 in regulating Th2 differentiation.   总被引:13,自引:0,他引:13  
To examine the role of CTLA-4 in Th cell differentiation, we used two newly generated CTLA-4-deficient (CTLA-4-/-) mouse strains: DO11. 10 CTLA-4-/- mice carrying a class II restricted transgenic TCR specific for OVA, and mice lacking CTLA-4, B7.1 and B7.2 (CTLA-4-/- B7.1/B7.2-/- ). When purified naive CD4+ DO11.10 T cells from CTLA-4-/- and wild-type mice were primed and restimulated in vitro with peptide Ag, CTLA-4-/- DO11.10 T cells developed into Th2 cells, whereas wild-type DO11.10 T cells developed into Th1 cells. Similarly, when CTLA-4-/- CD4+ T cells from mice lacking CTLA-4, B7. 1, and B7.2 were stimulated in vitro with anti-CD3 Ab and wild-type APC, these CTLA-4-/- CD4+ T cells produced IL-4 even during the primary stimulation, whereas CD4+ cells from B7.1/B7.2-/- mice did not produce IL-4. Upon secondary stimulation, CD4+ T cells from CTLA-4-/- B7.1/B7.2-/- mice secreted high levels of IL-4, whereas CD4+ T cells from B7.1/B7.2-/- mice produced IFN-gamma. In contrast to the effects on CD4+ Th differentiation, the absence of CTLA-4 resulted in only a modest effect on T cell proliferation, and increased proliferation of CTLA-4-/- CD4+ T cells was seen only during secondary stimulation in vitro. Administration of a stimulatory anti-CD28 Ab in vivo induced IL-4 production in CTLA-4-/- B7.1/B7.2-/- but not wild-type mice. These studies demonstrate that CTLA-4 is a critical and potent inhibitor of Th2 differentiation. Thus, the B7-CD28/CTLA-4 pathway plays a critical role in regulating Th2 differentiation in two ways: CD28 promotes Th2 differentiation while CTLA-4 limits Th2 differentiation.  相似文献   

10.
Previously, we demonstrated that the γC subunit of type I IL-4 receptor was required for robust tyrosine phosphorylation of the downstream adapter protein, IRS-2, correlating with the expression of genes (ArgI, Retnla, and Chi3l3) characteristic of alternatively activated macrophages. We located an I4R-like motif (IRS-2 docking sequence) in the γC cytoplasmic domain but not in the IL-13Rα1. Thus, we predicted that the γC tail directed enhanced IRS-2 phosphorylation. To test this, IL-4 signaling responses were examined in a mutant of the key I4R motif tyrosine residue (Y325F) and different γC truncation mutants (γ285, γ308, γ318, γ323, and γFULL LENGTH (FL)) co-expressed in L-cells or CHO cells with wild-type (WT) IL-4Rα. Surprisingly, IRS-1 phosphorylation was not diminished in Y325F L-cell mutants suggesting Tyr-325 was not required for the robust insulin receptor substrate response. IRS-2, STAT6, and JAK3 phosphorylation was observed in CHO cells expressing γ323 and γFL but not in γ318 and γ285 mutants. In addition, when CHO cells expressed γ318, γ323, or γFL with IL-2Rβ, IL-2 induced phospho-STAT5 only in the γ323 and γFL clones. Our data suggest that a smaller (5 amino acid) interval than previously determined is necessary for JAK3 activation/γC-mediated signaling in response to IL-4 and IL-2. Chimeric receptor chains of the γC tail fused to the IL-13Rα1 extracellular and transmembrane domain did not elicit robust IRS-2 phosphorylation in response to IL-13 suggesting that the extracellular/transmembrane domains of the IL-4/IL-13 receptor, not the cytoplasmic domains, control signaling efficiency. Understanding this pathway fully will lead to rational drug design for allergic disease.  相似文献   

11.
The bone morphogenetic protein (BMP) type II receptor (BMPR2) has a long cytoplasmic tail domain whose function is incompletely elucidated. Mutations in the tail domain of BMPR2 are found in familial cases of pulmonary arterial hypertension. To investigate the role of the tail domain of BMPR2 in BMP signaling, we generated a mouse carrying a Bmpr2 allele encoding a non-sense mediated decay-resistant mutant receptor lacking the tail domain of Bmpr2. We found that homozygous mutant mice died during gastrulation, whereas heterozygous mice grew normally without developing pulmonary arterial hypertension. Using pulmonary artery smooth muscle cells (PaSMC) from heterozygous mice, we determined that the mutant receptor was expressed and retained its ability to transduce BMP signaling. Heterozygous PaSMCs exhibited a BMP7‑specific gain of function, which was transduced via the mutant receptor. Using siRNA knockdown and cells from conditional knockout mice to selectively deplete BMP receptors, we observed that the tail domain of Bmpr2 inhibits Alk2‑mediated BMP7 signaling. These findings suggest that the tail domain of Bmpr2 is essential for normal embryogenesis and inhibits Alk2‑mediated BMP7 signaling in PaSMCs.  相似文献   

12.
T-cell activation requires two signaling events. One is provided by the engagement of the T-cell antigen receptor, and the second represents a costimulatory signal provided by antigen-presenting cells. CD28 mediates a costimulatory signal by binding its ligands, B7-1 and B7-2, on antigen-presenting cells, but the signaling pathway activated by CD28 has not been identified. A homologous molecule, CTLA-4, expressed on activated T cells, also binds to B7-1 and B7-2, but whether it has a signaling function is not known. We performed a structure-function analysis of CD28 to identify the functional domain which activates signal transduction. Truncation of the 40-amino-acid CD28 cytoplasmic tail abrogated costimulatory signaling. Chimeric constructs containing the extracellular and transmembrane regions of CD8 linked to the cytoplasmic region of CD28 had a costimulatory signaling function. Similar chimeras containing the cytoplasmic tail of CTLA-4 did not signal. Thus, the cytoplasmic region of CD28, but not CTLA-4, is sufficient to mediate costimulatory signaling. In addition, after CD28 stimulation, the p85 subunit of phosphatidylinositol 3'-kinase and phosphatidylinositol 3'-kinase activity were found in CD28 immunoprecipitates. The CD8-CD28 chimera, which has a costimulatory signaling function, associates with p85, while the nonfunctioning CD8-CTLA-4 chimera and a CD8-zeta chimera do not associate with p85. These results suggest that phosphatidylinositol 3'-kinase is specifically activated by CD28 and may mediate proximal events in the costimulatory signaling pathway regulated by CD28.  相似文献   

13.
The human NKG2A chain of the CD94/NKG2A receptor contains two immunoreceptor Tyr-based inhibitory motifs (ITIMs) in its cytoplasmic tail. To determine the relative importance of membrane-distal (residues 6-11) and membrane-proximal (residues 38-43) ITIMs in mediating the inhibitory signal, we made site-directed mutants of NKG2A at the Y (Y8F, Y40F, Y8F/Y40F) and the residues two positions N-terminal (Y-2) of Y (V6A, I38A, V6A/I38A) in each motif. Wild-type (wt) and mutated NKG2A were then cotransfected with CD94 into rat basophilic leukemia 2H3 cells. Immunochemical analyses after pervanadate treatment showed that each of the mutant molecules could be phosphorylated to expected levels relative to wt NKG2A and that all the mutations significantly reduced the avidity of SH2 domain-bearing tyrosine phosphatase-1 for NKG2A. Confocal microscopy was used to determine whether SH2 domain-bearing tyrosine phosphatase-1 and CD94/NKG2A colocalized intracellularly after receptor ligation. Only the Y8F/Y40F and Y8F mutant NKG2A molecules failed to show a dramatic colocalization. In agreement with this result, the Y8F/Y40F mutant was unable to inhibit FcepsilonRI-mediated serotonin release and the Y8F mutant was relatively ineffective compared with wt NKG2A. In contrast, the Y40F mutant was 70% as effective as wt in mediating inhibition, and the Y-2 mutations did not remarkably affect inhibitory function. These results show that, like KIR, both NKG2A ITIMs are required for mediating the maximal inhibitory signal, but opposite to KIR, the membrane-distal ITIM is of primary importance rather than the membrane-proximal ITIM. This probably reflects the opposite orientation of the ITIMs in type II vs type I proteins.  相似文献   

14.
IL-2-deficient mice develop a lymphoproliferative and autoimmune disease characterized by autoimmune hemolytic anemia (AHA) and inflammatory bowel disease. We have previously reported that IL-2 is necessary for optimal up-regulation of CTLA-4, an inducible negative regulator of T cell activation. In this study, we have tested the hypothesis that reduced expression of CTLA-4 in IL-2-deficient T cells contributes to the pathogenesis of disease in IL-2-deficient mice. Expression of CTLA-4 as a transgene completely prevented lymphoaccumulation and AHA in IL-2-deficient mice. The normalization of T cell numbers was due to inhibition of expansion of conventional CD4+CD25- T cells rather than to rescue of the numbers or function of CD4+CD25+ regulatory T cells, suggesting that CTLA-4 expression on conventional T cells plays a role in maintaining normal T cell homeostasis. In addition, the inhibitory effect of the CTLA-4 transgene on T cell expansion was at least in part independent of CD28 expression. Our results suggest that deficient CTLA-4 expression on conventional T cells contributes to the pathophysiology of the lymphoproliferative disease and AHA in IL-2-deficient mice. Thus, restoring CTLA-4 expression in T cells may be an attractive strategy to control clinical autoimmune diseases in which CTLA-4 expression is reduced.  相似文献   

15.
It is a consensus that a cytotoxic T lymphocyte associated molecule-4 (CTLA-4) transduces inhibitory signal for T cell activation under physiological condition, indicating that this molecule is an important regulator of T cell homeostasis in vivo. It has been reported that phosphorylation and dephosphorylation of tyrosine residue Y-165 in the cytoplasmic region of CTLA-4 play an important role in its negative signaling and cell surface expression. Some signaling molecules such as Src homology 2 protein tyrosine phosphatase 2 (SHP-2) and the p85 subunit of phosphatidylinositol 3 kinase (PI3 kinase) associate with phosphorylated tyrosine residue Y-165, through Src homology 2 (SH2) domains. On the other hand, the adapter complex proteins, AP-2 and AP-50 interact with the same tyrosine residue when unphosphorylated, resulting in clathrin-mediated endocytosis of CTLA-4 molecules. The objective of this study is to identify a tyrosine kinase that can directly bind and phosphorylate the critical tyrosine residue, Y-165 in the cytoplasmic domain of CTLA-4. Here, we demonstrated that 1) Janus Kinase 2 (Jak2) was directly associated with a box 1-like motif in the cytoplasmic tail of CTLA-4 molecule, 2) Jak2 phosphorylated Y-165 residue in the cytoplasmic region of CTLA-4 molecule, and 3) Jak2 was associated with CTLA-4 in HUT 78 T cell lines.  相似文献   

16.
The siglecs (sialic acid-binding Ig-like lectins) are a distinct subset of the Ig superfamily with adhesion-molecule-like structure. We describe here a novel member of the siglec protein family that shares a similar structure including five Ig-like domains, a transmembrane domain, and a cytoplasmic tail containing two ITIM-signaling motifs. Siglec-10 was identified through database mining of an asthmatic eosinophil EST library. Using the Stanford G3 radiation hybrid panel we were able to localize the genomic sequence of siglec-10 within the cluster of genes on chromosome 19q13.3-4 that encode other siglec family members. We have demonstrated that siglec-10 is an immune system-restricted membrane-bound protein that is highly expressed in peripheral blood leukocytes as demonstrated by Northern, RT-PCR and flow cytometry. Binding assays determined that the extracellular domain of siglec-10 was capable of binding to peripheral blood leukocytes. The cytoplasmic tail of siglec-10 contains four tyrosines, two of which are embedded in ITIM-signaling motifs (Y597 and Y667) and are likely involved in intracellular signaling. The ability of tyrosine kinases to phosphorylate the cytoplasmic tyrosines was evaluated by kinase assay using wild-type siglec-10 cytoplasmic domain and Y-->F mutants. The majority of the phosphorylation could be attributed to Y597 andY667. Further experiments with cell extracts suggest that SHP-1 interacts with Y667 and SHP-2 interacts with Y667 in addition to another tyrosine. This is very similar to CD33, which also binds the phosphatases SHP-1 and SHP-2, therefore siglec-10, as CD33, may be characterized as an inhibitory receptor.  相似文献   

17.
Ligation of CD28 or CTLA-4 with some biologicals can activate T cells due to an unexpected superagonist or inverse agonist activity, respectively. The risk of such an outcome limits the therapeutic development of these reagents. Thus, identifying the molecular determinants of superagonist/inverse agonist properties for biologicals targeting costimulatory/inhibitory receptors has not only fundamental value but also important therapeutic implications. In this study, we show that ligation of CTLA-4 with either soluble B7.1 Ig (but not B7.2 Ig) or with a recombinant bispecific in-tandem single chain Fv known as 24:26 induces TCR-independent, T cell activation. Such an inverse agonist activity requires CD28 expression and high CTLA-4 expression and is not seen when CTLA-4 is ligated by membrane-bound B7.1 or B7.2. At the molecular level, the inverse agonist activity of B7.1 Ig or 24:26 correlates with their ability to induce the formation of unique dimer-based, CTLA-4 oligomers on the T cell surface and involves CTLA-4 signaling through its cytoplasmic domain. Our results provide a potential mechanism to explain and to predict inverse agonist activity for CTLA-4 ligands.  相似文献   

18.
CTLA-4 is an essential inhibitor of T cell immune responses. At steady state, most CTLA-4 resides in intracellular compartments due to constitutive internalisation mediated via a tyrosine based endocytic motif (YVKM) within the cytoplasmic domain. This domain is highly conserved in mammals suggesting strong selective pressure. In contrast, the C-terminal domain varies considerably in non-mammals such as fish, xenopus and birds. We compared the ability of the C-terminus of these species to direct the trafficking of CTLA-4 with human CTLA-4. Using a chimeric approach, endocytosis was found to be conserved between human, xenopus and chicken CTLA-4 but was reduced substantially in trout CTLA-4, which lacks the conserved YXXM motif. Nevertheless, we identified an alternative YXXF motif in trout CTLA-4 that permitted limited endocytosis. Post-internalisation, CTLA-4 was either recycled or targeted for degradation. Human and chicken CTLA-4, which contain a YVKM motif, showed efficient recycling compared to xenopus CTLA-4 which contains a less efficient YEKM motif. Specific mutation of this motif in human CTLA-4 reduced receptor recycling. These findings suggest evolutionary development in the endocytic and recycling potential of CTLA-4, which may facilitate more refined functions of CTLA-4 within the mammalian immune system.  相似文献   

19.
The glutathione S-transferase (GST) isozyme A1-1 contains at its active site a catalytic tyrosine, Tyr9, which hydrogen bonds to, and stabilizes, the thiolate form of glutathione, GS-. In the substrate-free GST A1-1, the Tyr 9 has an unusually low pKa, approximately 8.2, for which the ionization to tyrosinate is monitored conveniently by UV and fluorescence spectroscopy in the tryptophan-free mutant, W21F. In addition, a short alpha-helix, residues 208-222, provides part of the GSH and hydrophobic ligand binding sites, and the helix becomes "disordered" in the absence of ligands. Here, hydrostatic pressure has been used to probe the conformational dynamics of the C-terminal helix, which are apparently linked to Tyr 9 ionization. The extent of ionization of Tyr 9 at pH 7.6 is increased dramatically at low pressures (p1/2 = 0.52 kbar), based on fluorescence titration of Tyr 9. The mutant protein W21F:Y9F exhibits no changes in tyrosine fluorescence up to 1.2 kbar; pressure specifically ionizes Tyr 9. The volume change, delta V, for the pressure-dependent ionization of Tyr 9 at pH 7.6, 19 degrees C, was -33 +/- 3 mL/mol. In contrast, N-acetyl tyrosine exhibits a delta V for deprotonation of -11 +/- 1 mL/mol, beginning from the same extent of initial ionization, pH 9.5. The pressure-dependent ionization is completely reversible for both Tyr 9 and N-acetyl tyrosine. Addition of S-methyl GSH converted the "soft" active site to a noncompressible site that exhibited negligible pressure-dependent ionization of Tyr 9 below 0.8 kbar. In addition, Phe 220 forms part of an "aromatic cluster" with Tyr 9 and Phe 10, and interactions among these residues were hypothesized to control the order of the C-terminal helix. The amino acid substitutions F220Y, F2201, and F220L afford proteins that undergo pressure-dependent ionization of Tyr 9 with delta V values of 31 +/- 2 mL/mol, 43 +/- 3 mL/mol, and 29 +/- 2 mL/mol, respectively. The p1/2 values for Tyr 9 ionization were 0.61 kbar, 0.41 kbar, and 0.46 kbar for F220Y, F220I, and F220L, respectively. Together, the results suggest that the C-terminal helix is conformationally heterogeneous in the absence of ligands. The conformations differ little in free energy, but they are significantly different in volume, and mutations at Phe 220 control the conformational distribution.  相似文献   

20.
P2Y1 [P2 (purinergic type-2)-receptor 1] is a G-protein-coupled ADP receptor that regulates platelet activation and ADP-induced Ca2+ signalling. Studies using P2Y1-knockout mice, G(q)-deficient mice or P2Y1-selective inhibitors have previously identified a key role for P2Y1 in pathophysiological thrombus formation at high shear stress. We provide evidence that a positively charged juxtamembrane sequence within the cytoplasmic C-terminal tail of P2Y1 can bind directly to the cytosolic regulatory protein calmodulin. Deletion by mutagenesis of the calmodulin-binding domain of P2Y1 inhibits intracellular Ca2+ flux in transfected cells. These results suggest that the interaction of calmodulin with the P2Y1 C-terminal tail may regulate P2Y1-dependent platelet aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号