首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Papain-family cysteine proteases of the malaria parasite Plasmodium falciparum, known as falcipains, are hemoglobinases and potential drug targets. Available data suggest that papain-family proteases require prodomains for correct folding into functional conformations. However, in prior studies of falcipain-2, an Escherichia coli-expressed construct containing only a small portion of the prodomain refolded efficiently, suggesting that this enzyme differs in this regard from other papain-family enzymes. To better characterize the determinants of folding for falcipain-2, we expressed multiple pro- and mature constructs of the enzyme in E. coli and assessed their abilities to refold. Mature falcipain-2 refolded into active protease with very similar properties to those of proteins resulting from the refolding of proenzyme constructs. Deletion of a 17-amino acid amino-terminal segment of the mature protease yielded a construct incapable of correct folding, but inclusion of this segment in trans allowed folding to active falcipain-2. The prodomain was a potent, competitive, and reversible inhibitor of mature falcipain-2 (K(i) 10(-10) m). Our results identify a chaperone-like function of an amino-terminal segment of mature falcipain-2 and suggest that protease inhibition, but not the mediation of folding, is a principal function of the falcipain-2 prodomain.  相似文献   

2.
Cysteine proteases of malaria parasites   总被引:13,自引:0,他引:13  
A number of cysteine proteases of malaria parasites have been described, and many more putative cysteine proteases are suggested by analysis of the Plasmodium falciparum genome sequence. Studies with protease inhibitors have suggested roles for cysteine proteases in hemoglobin hydrolysis, erythrocyte rupture, and erythrocyte invasion by erythrocytic malaria parasites. The best characterised Plasmodium cysteine proteases are the falcipains, a family of papain-family (clan CA) enzymes. Falcipain-2 and falcipain-3 are hemoglobinases that appear to hydrolyse host erythrocyte hemoglobin in the parasite food vacuole. This function was recently confirmed for falcipain-2, with the demonstration that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis. A role for falcipain-1 in erythrocyte invasion was recently suggested, but disruption of the falcipain-1 gene did not alter parasite development. Other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog, and serine-repeat antigens. The serine-repeat antigens have cysteine protease motifs, but in some the active site Cys is replaced by a Ser. One of these proteins, SERA-5, was recently shown to have serine protease activity. As SERA-5 and some other serine-repeat antigens localise to the parasitophorous vacuole in mature parasites, they may play a role in erythrocyte rupture. The P. falciparum genome sequence also predicts more distantly related (clan CD and CE) cysteine proteases, but biochemical characterisation of these proteins has not been done. New drugs for malaria are greatly needed, and cysteine proteases may provide useful new drug targets. Cysteine protease inhibitors have demonstrated potent antimalarial effects, and the optimisation and testing of falcipain inhibitor antimalarials is underway.  相似文献   

3.
BackgroundThe malaria parasite Plasmodium falciparum expresses four related papain-family cysteine proteases known as falcipains. These proteases play critical roles in the parasite life cycle, and as such are potential targets for new modes of antimalarial chemotherapy, as discussed in this review.Scope of reviewThis review summarizes available knowledge describing falcipain cysteine proteases of malaria parasites.Major conclusionsBased on available data the falcipains can be broken into two sub-families, the falcipain-1 and the falcipain-2/3 sub-families. Falcipain-1 has been difficult to study; it appears to play its most important roles in nonerythrocytic parasites, but not the erythrocytic stage responsible for human disease. Falcipain-2 and falcipain-3 have similar biochemical features, and are expressed sequentially during the erythrocytic cycle. Inhibition of either of these enzymes blocks hemoglobin hydrolysis and completion of the parasite developmental cycle. Knockout of falcipain-2 blocks hemoglobin hydrolysis, but parasites recover, presumably due to subsequent expression of falcipain-3. Knockout of falcipain-3 has not been possible, suggesting that the protease is essential for erythrocytic parasites. Determination of structures of falcipains and extensive chemistry efforts have facilitated identification of numerous small molecule falcipain inhibitors as potential new antimalarial agents. Other malaria parasites express close homologs of falcipain-1 and falcipain-2/3 proteases, suggesting that agents that target the falcipains will also be active against other human malaria parasites.General Significance. Falcipain-2 and falcipain-3 play vital roles during the erythrocytic stage of infection with P. falciparum and thus are promising targets for new agents to treat malaria.  相似文献   

4.
A family of aspartic proteases, the plasmepsins (PMs), plays a key role in the degradation of hemoglobin in the Plasmodium falciparum food vacuole. To study the trafficking of proPM II, we have modified the chromosomal PM II gene in P. falciparum to encode a proPM II-GFP chimera. By taking advantage of green fluorescent protein fluorescence in live parasites, the ultrastructural resolution of immunoelectron microscopy, and inhibitors of trafficking and PM maturation, we have investigated the biosynthetic path leading to mature PM II in the food vacuole. Our data support a model whereby proPM II is transported through the secretory system to cytostomal vacuoles and then is carried along with its substrate hemoglobin to the food vacuole where it is proteolytically processed to mature PM II.  相似文献   

5.
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 are major hemoglobinases and potential antimalarial drug targets. Our previous studies demonstrated that these enzymes are equipped with specific domains for specific functions. Structural and functional analysis of falcipains showed that they have unique domains including a refolding domain and a hemoglobin binding domain. As with many proteases, falcipain-2 and falcipain-3 are synthesized as inactive zymogens. However, it is not known how these enzymes get activated for hemoglobin hydrolysis. In this study, we are presenting the first evidence that salt bridges and hydrophobic interactions are required for the auto activation of cysteine proteases of P.falciparum. To investigate the mechanism of activation of these enzymes, we expressed the wild type protein as well as different mutants in E.coli. Refolding was assessed by circular dichroism. Both CD and trans activation data showed that the wild type enzymes and mutants are rich in secondary structures with similar folds. Our study revealed that prodomain-mature domain of falcipain-2 and falcipain-3 interacts via salt bridges and hydrophobic interactions. We mutated specific residues of falcipain-2 and falcipain-3, and evaluated their ability to undergo auto processing. Mutagenesis result showed that two salt bridges (Arg 185 - Glu 221, Glu 210 - Lys 403) in falcipain-2, and one salt bridge (Arg 202-Glu 238) in falcipain-3, play crucial roles in the activation of these enzymes. Further study revealed that hydrophobic interactions present both in falcipain-2 (Phe214, Trp449 Trp 453) and falcipain-3 (Phe 231 Trp 457 Trp 461) also play important roles in the activation of these enzymes. Our results revealed the interactions involved in auto processing of two major hemoglobinases of malaria parasite.  相似文献   

6.
To enhance the repertoire of molecular tools for studying malaria parasite biology, we adapted a ligand-regulatable FKBP protein destabilization domain (ddFKBP) for use in P. falciparum. We destabilized the reporter yellow fluorescent protein (YFP) and the P. falciparum protease falcipain-2 in a ligand-reversible manner by tagging with ddFKBP. The swollen food vacuole phenotype of falcipain-2 knockout parasites could be rescued in a Shld1 ligand-dependent fashion by falcipain-2-ddFKBP expression.  相似文献   

7.
Trophozoites of the malaria parasite Plasmodium falciparum hydrolyze erythrocyte hemoglobin in an acidic food vacuole to provide amino acids for parasite protein synthesis. Cysteine protease inhibitors block hemoglobin degradation, indicating that a cysteine protease plays a key role in this process. A principal trophozoite cysteine protease was purified by affinity chromatography. Sequence analysis indicated that the protease is encoded by a previously unidentified gene, falcipain-2. Falcipain-2 was predominantly expressed in trophozoites, was concentrated in food vacuoles, and was responsible for at least 93% of trophozoite soluble cysteine protease activity. A construct encoding mature falcipain-2 and a small portion of the prodomain was expressed in Escherichia coli and refolded to active enzyme. Specificity for the hydrolysis of peptide substrates by native and recombinant falcipain-2 was very similar, and optimal at acid pH in a reducing environment. Under physiological conditions (pH 5.5, 1 mm glutathione), falcipain-2 hydrolyzed both native hemoglobin and denatured globin. Our results suggest that falcipain-2 can initiate cleavage of native hemoglobin in the P. falciparum food vacuole, that, following initial cleavages, the protease plays a key role in rapidly hydrolyzing globin fragments, and that a drug discovery effort targeted at this protease is appropriate.  相似文献   

8.
The process of merozoite release in Plasmodium falciparum involves rupture of the parasitophorous vacuole membrane and erythrocyte plasma membrane. Through the use of protease inhibitors that halt the merozoite release, a number of parasite proteases, especially serine, aspartic, and cysteine proteases, have been implicated in the schizont rupture. To understand the precise role of cysteine proteases in the merozoite release, in the present study, we treated P. falciparum cultures with siRNAs corresponding to falcipain-1, falcipain-2, and falcipain-3, the three papain-family proteases of the parasite. Treatment of malaria parasites with either of the falcipain siRNAs considerably reduced parasite growth. Morphological examination of the siRNA treated parasite cultures revealed that most of the parasites in falcipain-2 siRNA treated cultures were arrested at schizont stage. Analysis of a transgenic P. falciparum line expressing chimeric-GFP upon treatment with falcipain-2 siRNA revealed block in the rupture of erythrocyte membrane at the time of merozoite egression. These results suggest that falcipain-2 is an important parasitic protease that participates in hemoglobin degradation and in the merozoite release.  相似文献   

9.
Trophozoite cysteine protease (TCP) activity, isolated from Plasmodium falciparum soluble 100,000 g extracts, displayed native falcipain-1 kinetic parameters towards peptidyl substrates. The labelling of either isolated TCP or soluble 100,000 g extracts by a cystatin-derived probe (biotinyl-Leu-Val-Gly-CHN2) revealed a single band of ca. 30 kDa by SDS-PAGE, which was resolved into four spots displaying isoelectric points (pI) from 4.7 to 5.3 after two-dimensional separation. The molecular mass and pI correspond to those of falcipain-3, falcipain-2, falcipain-2' and falcipain-1, respectively. The two central spots were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry as falcipain-2 and falcipain-2'. This activity-based probe represents a potential tool for profiling active falcipains in parasites.  相似文献   

10.
Malaria remains one of the most important infectious diseases in the world. Plasmodial cysteine proteases are proposed to be promising targets for novel antimalarial drug design. Vivapain-2 and vivapain-3 are cysteine proteases from Plasmodium vivax and apparent orthologs of falcipain-2 and falcipain-3 from Plasmodium falciparum. Model structures of vivapain-2 and vivapain-3 have been derived using the comparative protein modeling approach and validated by various structure/geometry verification tools. Correlation between the interaction energies calculated based on the docking studies of the inhibitors and the corresponding association constants (k(ass)) provide additional validation for the structures. Moreover, some of the biochemical differences observed between the vivapains may be explained by the results of the docking studies. The overall structures of the two vivapains are similar to each other as well as to the falcipains with most of the catalytic residues conserved. At the same time, some important differences are observed between the sizes of the binding pockets as well as some of the residues involved in binding. The study suggests a likelihood of developing common inhibitors for these enzymes provided the interesting differences in the binding pockets of these enzymes are critically considered during such an attempt. The results of the current study can be utilized in de novo drug design for effective treatment of malaria.  相似文献   

11.
A new series of peptidomimetic pseudo-prolyl-homophenylalanylketones were designed, synthesized and evaluated for inhibition of the Plasmodium falciparum cysteine proteases falcipain-2 (FP-2) and falcipain-3 (FP-3). In addition, the parasite killing activity of these compounds in human blood-cultured P. falciparum was examined. Of twenty-two (22) compounds synthesized, one peptidomimetic comprising a homophenylalanine-based α-hydroxyketone linked Cbz-protected hydroxyproline (39) showed the most potency (IC50 80 nM against FP-2 and 60 nM against FP-3). In silico analysis of these peptidomimetic analogs offered important protein–ligand structural insights including the role, by WaterMap, of water molecules in the active sites of these protease isoforms. The pseudo-dipeptide 39 and related compounds may serve as a promising direction forward in the design of competitive inhibitors of falcipains for the effective treatment of malaria.  相似文献   

12.
Malaria is a disease caused by Plasmodium parasites that affects hundreds of millions of people. Plasmodium proteases are involved in invasion, erythrocyte egress and degradation of host proteins. Falcipains are well-studied cysteine peptidases located in P. falciparum food vacuoles that participate in hemoglobin degradation. Cystatins are natural cysteine protease inhibitors that are implicated in a wide range of regulatory processes. Here, we report that a cystatin from sugarcane, CaneCPI-4, is selectively internalized into P. falciparum infected erythrocytes and is not processed by the parasite proteolytic machinery. Furthermore, we demonstrated the inhibition of P. falciparum cysteine proteases by CaneCPI-4, suggesting that it can exert inhibitory functions inside the parasites. The inhibition of the proteolytic activity of parasite cells is specific to this cystatin, as the addition of an anti-CaneCPI-4 antibody completely abolished the inhibition. We extended the studies to recombinant falcipain-2 and falcipain-3 and demonstrated that CaneCPI-4 strongly inhibits these enzymes, with IC50 values of 12 nM and 42 nM, respectively. We also demonstrated that CaneCPI-4 decreased the hemozoin formation in the parasites, affecting the parasitemia. Taken together, this study identified a natural molecule as a potential antimalarial that specifically targets falcipains and also contributes to a better understanding of macromolecule acquisition by Plasmodium falciparum infected RBCs.  相似文献   

13.
Although much is known about the molecular mechanisms involved in transporting soluble proteins to the central vacuole, the mechanisms governing the trafficking of membrane proteins remain largely unknown. In this study, we investigated the mechanism involved in targeting the membrane protein, AtβFructosidase 4 (AtβFruct4), to the central vacuole in protoplasts. AtβFruct4 as a green fluorescent protein (GFP) fusion protein was transported as a membrane protein during transit from the endoplasmic reticulum (ER) through the Golgi apparatus and the prevacuolar compartment (PVC). The N-terminal cytosolic domain of AtβFruct4 was sufficient for transport from the ER to the central vacuole and contained sequence motifs required for trafficking. The sequence motifs, LL and PI, were found to be critical for ER exit, while the EEE and LCPYTRL sequence motifs played roles in trafficking primarily from the trans Golgi network (TGN) to the PVC and from the PVC to the central vacuole, respectively. In addition, actin filaments and AtRabF2a, a Rab GTPase, played critical roles in vacuolar trafficking at the TGN and PVC, respectively. On the basis of these results, we propose that the vacuolar trafficking of AtβFruct4 depends on multiple sequence motifs located at the N-terminal cytoplasmic domain that function as exit and/or sorting signals in different stages during the trafficking process.  相似文献   

14.
BACKGROUND: Identification and validation of a drug discovery target is a prominent step in drug development. In the post-genomic era it is possible to reevaluate the association of a gene with a specific biological function to see if a homologous gene can subsume this role. This concept has special relevance to drug discovery in human infectious diseases, like malaria. A trophozoite cysteine protease (falcipain-1) from the papain family, thought to be responsible for the degradation of erythrocyte hemoglobin, has been considered a promising target for drug discovery efforts owing to the antimalarial activity of peptide based covalent cysteine protease inhibitors. This led to the development of non-peptidic non-covalent inhibitors of falcipain-1 and their characterization as antimalarials. It is now clear from sequencing efforts that the malaria genome contains more than one cysteine protease and that falcipain-1 is not the most important contributor to hemoglobin degradation. Rather, falcipain-2 and falcipain-3 appear to account for the majority of cysteine hemoglobinase activity in the plasmodium trophozoite. MATERIALS AND METHODS: We have modeled the falcipain-2 cysteine protease from one of the major human malaria species, Plasmodium falciparum and compared it to our original work on falcipain-1. As with falcipain-1, computa-tional screening of the falcipain-2 active site was conducted using DOCK. Using structural superpositions within the protease family and evolutionary analysis of substrate specificity sites, we focused on the commonalities and the protein specific features to direct our drug discovery effort. RESULTS: Since 1993, the size of the Available Chemicals Directory had increased from 55313 to 195419 unique chemical structures. For falcipain-2, eight inhibitors were identified with IC50's against the enzyme between 1 and 7 microM. Application of three of these inhibitors to infected erythrocytes cured malaria in culture, but parasite death did not correlate with food vacuole abnormalities associated with the activity of mechanistic inhibitors of cysteine proteases like the epoxide E64. CONCLUSIONS: Using plasmodial falcipain proteases, we show how a protein family perspective can influence target discovery and inhibitor design. We suspect that parallel drug discovery programs where a family of targets is considered, rather than serial programs built on a single therapeutic focus, will become the dominant industrial paradigm. Economies of scale in assay development and in compound synthesis are expected owing to the functional and structural features of individual family members. One of the remaining challenges in post-genomic drug discovery is that inhibitors of one target are likely to show some activity against other family members. This lack of specificity may lead to difficulties in functional assignments and target validation as well as a complex side effect profile.  相似文献   

15.
A series of artemisinin–vinyl sulfone hybrid molecules with the potential to act in the parasite food vacuole via endoperoxide activation and falcipain inhibition was synthesized and screened for antiplasmodial activity and falcipain-2 inhibition. All conjugates were active against the Plasmodium falciparum W2 strain in the low nanomolar range and those containing the Leu-hPhe core inhibited falcipain-2 in low micromolar range.  相似文献   

16.
Falcipain-2, a papain family cysteine protease of the malaria parasite Plasmodium falciparum, plays a key role in parasite hydrolysis of hemoglobin and is a potential chemotherapeutic target. As with many proteases, falcipain-2 is synthesized as a zymogen, and the prodomain inhibits activity of the mature enzyme. To investigate the mechanism of regulation of falcipain-2 by its prodomain, we expressed constructs encoding different portions of the prodomain and tested their ability to inhibit recombinant mature falcipain-2. We identified a C-terminal segment (Leu155–Asp243) of the prodomain, including two motifs (ERFNIN and GNFD) that are conserved in cathepsin L sub-family papain family proteases, as the mediator of prodomain inhibitory activity. Circular dichroism analysis showed that the prodomain including the C-terminal segment, but not constructs lacking this segment, was rich in secondary structure, suggesting that the segment plays a crucial role in protein folding. The falcipain-2 prodomain also efficiently inhibited other papain family proteases, including cathepsin K, cathepsin L, cathepsin B, and cruzain, but it did not inhibit cathepsin C or tested proteases of other classes. A structural model of pro-falcipain-2 was constructed by homology modeling based on crystallographic structures of mature falcipain-2, procathepsin K, procathepsin L, and procaricain, offering insights into the nature of the interaction between the prodomain and mature domain of falcipain-2 as well as into the broad specificity of inhibitory activity of the falcipain-2 prodomain.  相似文献   

17.
Trypanosome protozoa, an early lineage of eukaryotic cells, have proteases homologous to mammalian lysosomal cathepsins, but the precursor proteins lack mannose 6-phosphate. Utilizing green fluorescent protein as a reporter, we demonstrate that the carbohydrate-free prodomain of a trypanosome cathepsin L is necessary and sufficient for directing green fluorescent protein to the lysosome/endosome compartment. A proper prodomain/catalytic domain processing site sequence is also required to free the mature protease for delivery to the lysosome/endosome compartment. A nine-amino acid prodomain loop motif, implicated in prodomain-receptor interactions in mammalian cells, is conserved in the protozoa. Site-directed mutagenesis now confirms the importance of this loop to protease trafficking and suggests that a protein motif targeting signal for lysosomal proteases arose early in eukaryotic cell evolution.  相似文献   

18.
Erythrocytic malaria parasites utilize proteases for a number of cellular processes, including hydrolysis of hemoglobin, rupture of erythrocytes by mature schizonts, and subsequent invasion of erythrocytes by free merozoites. However, mechanisms used by malaria parasites to control protease activity have not been established. We report here the identification of an endogenous cysteine protease inhibitor of Plasmodium falciparum, falstatin, based on modest homology with the Trypanosoma cruzi cysteine protease inhibitor chagasin. Falstatin, expressed in Escherichia coli, was a potent reversible inhibitor of the P. falciparum cysteine proteases falcipain-2 and falcipain-3, as well as other parasite- and nonparasite-derived cysteine proteases, but it was a relatively weak inhibitor of the P. falciparum cysteine proteases falcipain-1 and dipeptidyl aminopeptidase 1. Falstatin is present in schizonts, merozoites, and rings, but not in trophozoites, the stage at which the cysteine protease activity of P. falciparum is maximal. Falstatin localizes to the periphery of rings and early schizonts, is diffusely expressed in late schizonts and merozoites, and is released upon the rupture of mature schizonts. Treatment of late schizionts with antibodies that blocked the inhibitory activity of falstatin against native and recombinant falcipain-2 and falcipain-3 dose-dependently decreased the subsequent invasion of erythrocytes by merozoites. These results suggest that P. falciparum requires expression of falstatin to limit proteolysis by certain host or parasite cysteine proteases during erythrocyte invasion. This mechanism of regulation of proteolysis suggests new strategies for the development of antimalarial agents that specifically disrupt erythrocyte invasion.  相似文献   

19.
Falcipain-2 (FP-2) and falcipain-3 (FP-3), haemoglobin-degrading enzymes in Plasmodium falciparum, are validated drug targets for the development of effective inhibitors against malaria. However, no commercial drug-targeting falcipains has been developed despite their central role in the life cycle of the parasites. In this work, in silico approaches are used to identify key structural elements that control the binding and selectivity of a diverse set of non-peptidic compounds onto FP-2, FP-3 and homologues from other Plasmodium species as well as human cathepsins. Hotspot residues and the underlying non-covalent interactions, important for the binding of ligands, are identified by interaction fingerprint analysis between the proteases and 2-cyanopyridine derivatives (best hits). It is observed that the size and chemical type of substituent groups within 2-cyanopyridine derivatives determine the strength of protein–ligand interactions. This research presents novel results that can further be exploited in the structure-based molecular-guided design of more potent antimalarial drugs.  相似文献   

20.
Sohn EJ  Kim ES  Zhao M  Kim SJ  Kim H  Kim YW  Lee YJ  Hillmer S  Sohn U  Jiang L  Hwang I 《The Plant cell》2003,15(5):1057-1070
Rab proteins are members of the Ras superfamily of small GTP binding proteins and play important roles in various intracellular trafficking steps. We investigated the role of Rha1, an Arabidopsis Rab5 homolog, in intracellular trafficking in Arabidopsis protoplasts. In the presence of a dominant-negative mutant of Rha1, soluble vacuolar cargo proteins such as sporamin:green fluorescent protein (Spo:GFP) and Arabidopsis aleurain like protein:GFP are not delivered to the central vacuole; instead, they accumulate as a diffuse or punctate staining pattern within the cell. Spo:GFP at the punctate stains observed in the presence of hemagglutinin:Rha1[S24N] is colocalized with endogenous vacuolar sorting receptor (VSR(At-1)), which is known to localize primarily to the prevacuolar compartment, whereas Spo:GFP in the diffuse pattern is associated with tonoplasts. Furthermore, expression of Rha1[S24N] causes the secretion of a portion of the vacuolar proteins into medium. However, the inhibitory effect of Rha1[S24N] on vacuolar trafficking is relieved partially by coexpressed wild-type Rha1. Based on these results, we propose that Rha1 plays a critical role in the trafficking of soluble cargoes from the prevacuolar compartment to the central vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号