首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genomic selection in forest tree breeding   总被引:2,自引:0,他引:2  
Genomic selection (GS) involves selection decisions based on genomic breeding values estimated as the sum of the effects of genome-wide markers capturing most quantitative trait loci (QTL) for the target trait(s). GS is revolutionizing breeding practice in domestic animals. The same approach and concepts can be readily applied to forest tree breeding where long generation times and late expressing complex traits are also a challenge. GS in forest trees would have additional advantages: large training populations can be easily assembled and accurately phenotyped for several traits, and the extent of linkage disequilibrium (LD) can be high in elite populations with small effective population size (N e) frequently used in advanced forest tree breeding programs. Deterministic equations were used to assess the impact of LD (modeled by N e and intermarker distance), the size of the training set, trait heritability, and the number of QTL on the predicted accuracy of GS. Results indicate that GS has the potential to radically improve the efficiency of tree breeding. The benchmark accuracy of conventional BLUP selection is reached by GS even at a marker density ~2 markers/cM when N e ≤ 30, while up to 20 markers/cM are necessary for larger N e. Shortening the breeding cycle by 50% with GS provides an increase ≥100% in selection efficiency. With the rapid technological advances and declining costs of genotyping, our cautiously optimistic outlook is that GS has great potential to accelerate tree breeding. However, further simulation studies and proof-of-concept experiments of GS are needed before recommending it for operational implementation.  相似文献   

2.
? Genomic selection (GS) is expected to cause a paradigm shift in tree breeding by improving its speed and efficiency. By fitting all the genome-wide markers concurrently, GS can capture most of the 'missing heritability' of complex traits that quantitative trait locus (QTL) and association mapping classically fail to explain. Experimental support of GS is now required. ? The effectiveness of GS was assessed in two unrelated Eucalyptus breeding populations with contrasting effective population sizes (N(e) = 11 and 51) genotyped with > 3000 DArT markers. Prediction models were developed for tree circumference and height growth, wood specific gravity and pulp yield using random regression best linear unbiased predictor (BLUP). ? Accuracies of GS varied between 0.55 and 0.88, matching the accuracies achieved by conventional phenotypic selection. Substantial proportions (74-97%) of trait heritability were captured by fitting all genome-wide markers simultaneously. Genomic regions explaining trait variation largely coincided between populations, although GS models predicted poorly across populations, likely as a result of variable patterns of linkage disequilibrium, inconsistent allelic effects and genotype × environment interaction. ? GS brings a new perspective to the understanding of quantitative trait variation in forest trees and provides a revolutionary tool for applied tree improvement. Nevertheless population-specific predictive models will likely drive the initial applications of GS in forest tree breeding.  相似文献   

3.
Genomic selection for marker-assisted improvement in line crosses   总被引:1,自引:0,他引:1  
Efficiency of genomic selection with low-cost genotyping in a composite line from a cross between inbred lines was evaluated for a trait with heritability 0.10 or 0.25 using a low-density marker map. With genomic selection, selection was on the sum of estimates of effects of all marker intervals across the genome, fitted either as fixed (fixed GS) or random (random GS) effects. Reponses to selection over 10 generations, starting from the F2, were compared with standard BLUP selection. Estimates of variance for each interval were assumed independent and equal. Both GS strategies outperformed BLUP selection, especially in initial generations. Random GS outperformed fixed GS in early generations and performed slightly better than fixed GS in later generations. Random GS gave higher genetic gain when the number of marker intervals was greater (180 or 10 cM intervals), whereas fixed GS gave higher genetic gain when the number of marker intervals was low (90 or 20 cM). Including interactions between generation and marker scores in the model resulted in lower genetic gains than models without interactions. When phenotypes were available only in the F2 for GS, treating marker scores as fixed effects led to considerably lower genetic gain than random GS. Benefits of GS over standard BLUP were lower with high heritability. Genomic selection resulted in greater response than MAS based on only significant marker intervals (standard MAS) by increasing the frequency of QTL with both large and small effects. The efficiency of genomic selection over standard MAS depends on stringency of the threshold used for QTL detection. In conclusion, genomic selection can be effective in composite lines using a sparse marker map.  相似文献   

4.

Key message

We compare genomic selection methods that use correlated traits to help predict biomass yield in sorghum, and find that trait-assisted genomic selection performs best.

Abstract

Genomic selection (GS) is usually performed on a single trait, but correlated traits can also help predict a focal trait through indirect or multi-trait GS. In this study, we use a pre-breeding population of biomass sorghum to compare strategies that use correlated traits to improve prediction of biomass yield, the focal trait. Correlated traits include moisture, plant height measured at monthly intervals between planting and harvest, and the area under the growth progress curve. In addition to single- and multi-trait direct and indirect GS, we test a new strategy called trait-assisted GS, in which correlated traits are used along with marker data in the validation population to predict a focal trait. Single-trait GS for biomass yield had a prediction accuracy of 0.40. Indirect GS performed best using area under the growth progress curve to predict biomass yield, with a prediction accuracy of 0.37, and did not differ from indirect multi-trait GS that also used moisture information. Multi-trait GS and single-trait GS yielded similar results, indicating that correlated traits did not improve prediction of biomass yield in a standard GS scenario. However, trait-assisted GS increased prediction accuracy by up to \(50\%\) when using plant height in both the training and validation populations to help predict yield in the validation population. Coincidence between selected genotypes in phenotypic and genomic selection was also highest in trait-assisted GS. Overall, these results suggest that trait-assisted GS can be an efficient strategy when correlated traits are obtained earlier or more inexpensively than a focal trait.
  相似文献   

5.
Simulation studies allow addressing consequences of selection schemes, helping to identify effective strategies to enable genetic gain and maintain genetic diversity. The aim of this study was to evaluate the long-term impact of genomic selection (GS) in genetic progress and genetic diversity of beef cattle. Forward-in-time simulation generated a population with pattern of linkage disequilibrium close to that previously reported for real beef cattle populations. Different scenarios of GS and traditional pedigree-based BLUP (PBLUP) selection were simulated for 15 generations, mimicking selection for female reproduction and meat quality. For GS scenarios, an alternative selection criterion was simulated (wGBLUP), intended to enhance long-term gains by attributing more weight to favorable alleles with low frequency. GS allowed genetic progress up to 40% greater than PBLUP, for female reproduction and meat quality. The alternative criterion wGBLUP did not increase long-term response, although allowed reducing inbreeding rates and loss of favorable alleles. The results suggest that GS outperforms PBLUP when the selected trait is under less polygenic background and that attributing more weight to low-frequency favorable alleles can reduce inbreeding rates and loss of favorable alleles in GS.  相似文献   

6.
The breeding scheme of a Swiss sire line was modeled to compare different target traits and information sources for selection against boar taint. The impact of selection against boar taint on production traits was assessed for different economic weights of boar taint compounds. Genetic gain and breeding costs were evaluated using ZPlan+, a software based on selection index theory, gene flow method and economic modeling. Scenario I reflected the currently practiced breeding strategy as a reference scenario without selection against boar taint. Scenario II incorporated selection against the chemical compounds of boar taint, androstenone (AND), skatole (SKA) and indole (IND) with economic weights of −2.74, −1.69 and −0.99 Euro per unit of the log transformed trait, respectively. As information sources, biopsy-based performance testing of live boars (BPT) was compared with genomic selection (GS) and a combination of both. Scenario III included selection against the subjectively assessed human nose score (HNS) of boar taint. Information sources were either station testing of full and half sibs of the selection candidate or GS against HNS of boar taint compounds. In scenario I, annual genetic gain of log-transformed AND (SKA; IND) was 0.06 (0.09; 0.02) Euro, which was because of favorable genetic correlations with lean meat percentage and meat surface. In scenario II, genetic gain increased to 0.28 (0.20; 0.09) Euro per year when conducting BPT. Compared with BPT, genetic gain was smaller with GS. A combination of BPT and GS only marginally increased annual genetic gain, whereas variable costs per selection candidate augmented from 230 Euro (BPT) to 330 Euro (GS) or 380 Euro (both). The potential of GS was found to be higher when selecting against HNS, which has a low heritability. Annual genetic gain from GS was higher than from station testing of 4 full sibs and 76 half sibs with one or two measurements. The most effective strategy to reduce HNS was selecting against chemical compounds by conducting BPT. Because of heritabilities higher than 0.45 for AND, SKA and IND and high genetic correlations to HNS, the (correlated) response in units of the trait could be increased by 62% compared with scenario III with GS and even by 79% compared with scenario III, with station testing of siblings with two measurements. Increasing the economic weights of boar taint compounds amplified negative effects on average daily gain, drip loss and intramuscular fat percentage.  相似文献   

7.
Improvements in living standards have resulted in consumers having higher expectations for chicken meat quality. This is particularly true in Asia, where there is high consumer preference for local breeds. Nothing is presently known about the effectiveness of using genomic selection (GS) strategies in chickens to genetically improve meat quality traits that cannot be measured in living potential parents. In this study, 724 Beijing‐You chickens were used as a training population; all were genotyped using Illumina 60K SNP chips, and intramuscular fat content in breast muscle (IMFbr) was measured. Birds in the GS line were selected based on genomic estimated breeding values, IMFbr being the sole trait. Genetic progress in one generation was compared to that from conventional family‐based selection, and both were evaluated against random‐bred controls. Results showed that relative to the random‐bred controls, IMF percentage was improved 9.62% using GS, comparable to the 10.38% improvement using family‐based selection. We quantified the effectiveness of GS when applied to a meat quality trait with low heritability in chickens. We plan to introduce custom SNP chips, appropriate for native chicken breeds in China, to assist in applying GS in local breeding and accelerate genetic gain.  相似文献   

8.
The general applicability of genomic selection (GS) to plant breeding and principles guiding its use have been established by simulation and empirical cross-validation studies. More recently, studies have demonstrated genetic gains over multiple cycles of selection in a variety of crop species. In this study, we provide additional evidence for the effectiveness of GS in an actual breeding program by demonstrating significant gains of 186.1 kg ha?1 and ??1.85 ppm for grain yield and deoxynivalenol, respectively, two unfavorably correlated quantitative traits, across 3 cycles of selection in a spring six-row barley breeding population. With its general effectiveness established, the next step is to increase the accuracy of predictions used in GS and thereby increase genetic gains. For this, we first showed that updating the training population (TP) with phenotyped lines from recent breeding cycles, specifically selected lines, had an overall positive effect on prediction accuracy. Additionally, we investigated four recently proposed algorithms that seek to optimize the composition of a TP. Overall, the optimization algorithms improved prediction accuracy when compared to a randomly selected TP subset of the same size, but which algorithm performed best was dependent on the trait being predicted and other factors discussed within. This retrospective investigation highlights the importance of maintaining and optimizing the TP when using GS in applied breeding to maximize prediction accuracy, thereby maximizing gain from selection and resource utilization efficiency.  相似文献   

9.
Genomic selection (GS) can be a powerful technology in conifer breeding because conifers have long generation intervals, protracted evaluation times, and high costs of breeding inputs. To elucidate the potential of GS for conifer breeding, we simulated 60-year breeding programs in Cryptomeria japonica with and without GS. In conifers, the rapid decay of linkage disequilibrium (LD) can constitute a severe barrier to application of GS. For overcoming that barrier, we proposed an idea to leverage a seed orchard system, which has been used commonly in conifers, because some degree of LD exists in progenies derived from the limited number of elite trees in a seed orchard. The base population used for simulations consisted of progenies from 25 elite trees. Results show that GS breeding (GSB) done without model updating outperformed phenotypic selection breeding (PSB) during the first 30 years, but the genetic gain achieved over the 60 years was smaller in GSB than in PSB. However, GSB with model updating outperformed PSB over the 60 years. The genetic gain achieved over the 60 years of GSB with model updating was nearly twice that of PSB. Advantages of GSB over PSB prevailed, even for a low heritability polygenic trait. The number of markers necessary for efficient GS was a realistic level (e.g., one in every 1 cM), although higher marker density engendered higher accuracy of selection. These results suggest that GS can be useful in C. japonica breeding. Updating of the prediction model was, however, indispensable for attaining the large genetic gain.  相似文献   

10.

Key message

We developed a universally applicable planning tool for optimizing the allocation of resources for one cycle of genomic selection in a biparental population. The framework combines selection theory with constraint numerical optimization and considers genotype×? environment interactions.

Abstract

Genomic selection (GS) is increasingly implemented in plant breeding programs to increase selection gain but little is known how to optimally allocate the resources under a given budget. We investigated this problem with model calculations by combining quantitative genetic selection theory with constraint numerical optimization. We assumed one selection cycle where both the training and prediction sets comprised double haploid (DH) lines from the same biparental population. Grain yield for testcrosses of maize DH lines was used as a model trait but all parameters can be adjusted in a freely available software implementation. An extension of the expected selection accuracy given by Daetwyler et al. (2008) was developed to correctly balance between the number of environments for phenotyping the training set and its population size in the presence of genotype?×?environment interactions. Under small budget, genotyping costs mainly determine whether GS is superior over phenotypic selection. With increasing budget, flexibility in resource allocation increases greatly but selection gain leveled off quickly requiring balancing the number of populations with the budget spent for each population. The use of an index combining phenotypic and GS predicted values in the training set was especially beneficial under limited resources and large genotype × environment interactions. Once a sufficiently high selection accuracy is achieved in the prediction set, further selection gain can be achieved most efficiently by massively expanding its size. Thus, with increasing budget, reducing the costs for producing a DH line becomes increasingly crucial for successfully exploiting the benefits of GS.  相似文献   

11.

Background

Genomic selection (GS) using estimated breeding values (GS-EBV) based on dense marker data is a promising approach for genetic improvement. A simulation study was undertaken to illustrate the opportunities offered by GS for designing breeding programs. It consisted of a selection program for a sex-limited trait in layer chickens, which was developed by deterministic predictions under different scenarios. Later, one of the possible schemes was implemented in a real population of layer chicken.

Methods

In the simulation, the aim was to double the response to selection per year by reducing the generation interval by 50 %, while maintaining the same rate of inbreeding per year. We found that GS with retraining could achieve the set objectives while requiring 75 % fewer reared birds and 82 % fewer phenotyped birds per year. A multi-trait GS scenario was subsequently implemented in a real population of brown egg laying hens. The population was split into two sub-lines, one was submitted to conventional phenotypic selection, and one was selected based on genomic prediction. At the end of the 3-year experiment, the two sub-lines were compared for multiple performance traits that are relevant for commercial egg production.

Results

Birds that were selected based on genomic prediction outperformed those that were submitted to conventional selection for most of the 16 traits that were included in the index used for selection. However, although the two programs were designed to achieve the same rate of inbreeding per year, the realized inbreeding per year assessed from pedigree was higher in the genomic selected line than in the conventionally selected line.

Conclusions

The results demonstrate that GS is a promising alternative to conventional breeding for genetic improvement of layer chickens.  相似文献   

12.
Genomic selection (GS) can potentially accelerate genetic improvement of soybean [Glycine max L. (Merrill)] by reducing the time to complete breeding cycles. The objectives of this study were to (1) explore the accuracy of GS in soybean, (2) evaluate the contribution of intrapopulational structure to the accuracy of GS, and (3) compare the efficiencies of phenotypic selection and GS in soybean. For this, phenotypic and genotypic data were collected from 324 soybean genotypes (243 recombinant inbred lines and 81 cultivars) and GS was performed for five yield related traits. BayesB methodology with a 10-fold cross-validation was used to compute accuracies. The GS accuracies were evaluated for grain yield, plant height, insertion of first pod, days to maturity, and 1000-grain weight at eight locations. We found that GS can reduce the time required to complete a selection cycle in soybean, which can lead to increased production of this commercially important crop. Furthermore, genotypic accuracy was similar regardless of population structure correction.  相似文献   

13.

Background

Genomic selection (GS) allows estimation of the breeding value of individuals, even for non-phenotyped animals. The aim of the study was to examine the potential of identity-by-descent genomic selection (IBD-GS) in genomic selection for a binary, sib-evaluated trait, using different strategies of selective genotyping. This low-cost GS approach is based on linkage analysis of sparse genome-wide marker loci.

Findings

Lowly to highly heritable (h2 = 0.15, 0.30 or 0.60) binary traits with varying incidences (10 to 90%) were simulated for an aquaculture-like population. Genotyping was restricted to the 30% best families according to phenotype, using three genotyping strategies for training sibs. IBD-GS increased genetic gain compared to classical pedigree-based selection; the differences were largest at incidences of 10 to 50% of the desired category (i.e. a relative increase in genetic gain greater than 20%). Furthermore, the relative advantage of IBD-GS increased as the heritability of the trait increased. Differences were small between genotyping strategies, and most of the improvement was achieved by restricting genotyping to sibs with the least common binary phenotype. Genetic gains of IBD-GS relative to pedigree-based models were highest at low to moderate (10 to 50%) incidences of the category selected for, but decreased substantially at higher incidences (80 to 90%).

Conclusions

The IBD-GS approach, combined with sparse and selective genotyping, is well suited for genetic evaluation of binary traits. Genetic gain increased considerably compared with classical pedigree-based selection. Most of the improvement was achieved by selective genotyping of the sibs with the least common (minor) binary category phenotype. Furthermore, IBD-GS had greater advantage over classical pedigree-based models at low to moderate incidences of the category selected for.  相似文献   

14.
Recent genomic evaluation studies using real data and predicting genetic gain by modeling breeding programs have reported moderate expected benefits from the replacement of classic selection schemes by genomic selection (GS) in small ruminants. The objectives of this study were to compare the cost, monetary genetic gain and economic efficiency of classic selection and GS schemes in the meat sheep industry. Deterministic methods were used to model selection based on multi-trait indices from a sheep meat breeding program. Decisional variables related to male selection candidates and progeny testing were optimized to maximize the annual monetary genetic gain (AMGG), that is, a weighted sum of meat and maternal traits annual genetic gains. For GS, a reference population of 2000 individuals was assumed and genomic information was available for evaluation of male candidates only. In the classic selection scheme, males breeding values were estimated from own and offspring phenotypes. In GS, different scenarios were considered, differing by the information used to select males (genomic only, genomic+own performance, genomic+offspring phenotypes). The results showed that all GS scenarios were associated with higher total variable costs than classic selection (if the cost of genotyping was 123 euros/animal). In terms of AMGG and economic returns, GS scenarios were found to be superior to classic selection only if genomic information was combined with their own meat phenotypes (GS-Pheno) or with their progeny test information. The predicted economic efficiency, defined as returns (proportional to number of expressions of AMGG in the nucleus and commercial flocks) minus total variable costs, showed that the best GS scenario (GS-Pheno) was up to 15% more efficient than classic selection. For all selection scenarios, optimization increased the overall AMGG, returns and economic efficiency. As a conclusion, our study shows that some forms of GS strategies are more advantageous than classic selection, provided that GS is already initiated (i.e. the initial reference population is available). Optimizing decisional variables of the classic selection scheme could be of greater benefit than including genomic information in optimized designs.  相似文献   

15.

Background

Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro embryo production and embryo transfer (JIVET) can boost rates of genetic gain but they can also increase rates of inbreeding. Inbreeding can be managed using the principles of optimal contribution selection (OCS), which maximizes genetic gain while placing a penalty on the rate of inbreeding. We evaluated the potential benefits and synergies that exist between genomic selection (GS) and reproductive technologies under OCS for sheep and cattle breeding programs.

Methods

Various breeding program scenarios were simulated stochastically including: (1) a sheep breeding program for the selection of a single trait that could be measured either early or late in life; (2) a beef breeding program with an early or late trait; and (3) a dairy breeding program with a sex limited trait. OCS was applied using a range of penalties (severe to no penalty) on co-ancestry of selection candidates, with the possibility of using multiple ovulation and embryo transfer (MOET) and/or juvenile in vitro embryo production and embryo transfer (JIVET) for females. Each breeding program was simulated with and without genomic selection.

Results

All breeding programs could be penalized to result in an inbreeding rate of 1 % increase per generation. The addition of MOET to artificial insemination or natural breeding (AI/N), without the use of GS yielded an extra 25 to 60 % genetic gain. The further addition of JIVET did not yield an extra genetic gain. When GS was used, MOET and MOET + JIVET programs increased rates of genetic gain by 38 to 76 % and 51 to 81 % compared to AI/N, respectively.

Conclusions

Large increases in genetic gain were found across species when female reproductive technologies combined with genomic selection were applied and inbreeding was managed, especially for breeding programs that focus on the selection of traits measured late in life or that are sex-limited. Optimal contribution selection was an effective tool to optimally allocate different combinations of reproductive technologies. Applying a range of penalties to co-ancestry of selection candidates allows a comprehensive exploration of the inbreeding vs. genetic gain space.  相似文献   

16.
Kernel length in rice (Oryza sativa L.) is controlled by various quantitative trait loci of which GS3 is the most important, being responsible for 80–90% of the variation in kernel length. A mutation in the second exon of this gene has been reported to be associated with maximum variations in the kernel length. We have developed a simple PCR-based marker system named DRR-GL which targets the functional nucleotide polymorphism at GS3. This marker system has the advantages that it is easy to use, saves time and cost, and is amenable for large-scale marker-assisted selection for the trait of kernel length. Validation of this marker in a segregating population and 152 rice varieties, which includes 30 elite basmati varieties, reveals its effective co-segregation and association with the traits of kernel length as well as kernel elongation after cooking. We recommend utilization of this simple, low-cost marker system in breeding programs targeted at improvement of key rice grain quality traits, kernel length and kernel elongation.  相似文献   

17.
In genomic selection (GS), genome-wide SNP markers are used to generate genomic estimated breeding values for selection candidates. The application of GS in shellfish looks promising and has the potential to help in dealing with one of the main issues currently affecting Pacific oyster production worldwide, which is the ‘summer mortality syndrome’. This causes periodic mass mortality in farms worldwide and has mainly been attributed to a specific variant of the ostreid herpesvirus (OsHV-1). In the current study, we evaluated the potential of genomic selection for host resistance to OsHV-1 in Pacific oysters, and compared it with pedigree-based approaches. An OsHV-1 disease challenge was performed using an immersion-based virus exposure treatment for oysters for 7 days. A total of 768 samples were genotyped using the medium-density SNP array for oysters. A GWAS was performed for the survival trait using a GBLUP approach in blupf 90 software. Heritability ranged from 0.25 ± 0.05 to 0.37 ± 0.05 (mean ± SE) based on pedigree and genomic information respectively. Genomic prediction was more accurate than pedigree prediction, and SNP density reduction had little impact on prediction accuracy until marker densities dropped below approximately 500 SNPs. This demonstrates the potential for GS in Pacific oyster breeding programmes, and importantly, demonstrates that a low number of SNPs might suffice to obtain accurate genomic estimated breeding values, thus potentially making the implementation of GS more cost effective.  相似文献   

18.

Background

Simulation and empirical studies of genomic selection (GS) show accuracies sufficient to generate rapid gains in early selection cycles. Beyond those cycles, allele frequency changes, recombination, and inbreeding make analytical prediction of gain impossible. The impacts of GS on long-term gain should be studied prior to its implementation.

Methods

A simulation case-study of this issue was done for barley, an inbred crop. On the basis of marker data on 192 breeding lines from an elite six-row spring barley program, stochastic simulation was used to explore the effects of large or small initial training populations with heritabilities of 0.2 or 0.5, applying GS before or after phenotyping, and applying additional weight on low-frequency favorable marker alleles. Genomic predictions were from ridge regression or a Bayesian analysis.

Results

Assuming that applying GS prior to phenotyping shortened breeding cycle time by 50%, this practice strongly increased early selection gains but also caused the loss of many favorable QTL alleles, leading to loss of genetic variance, loss of GS accuracy, and a low selection plateau. Placing additional weight on low-frequency favorable marker alleles, however, allowed GS to increase their frequency earlier on, causing an initial increase in genetic variance. This dynamic led to higher long-term gain while mitigating losses in short-term gain. Weighted GS also increased the maintenance of marker polymorphism, ensuring that QTL-marker linkage disequilibrium was higher than in unweighted GS.

Conclusions

Losing favorable alleles that are in weak linkage disequilibrium with markers is perhaps inevitable when using GS. Placing additional weight on low-frequency favorable alleles, however, may reduce the rate of loss of such alleles to below that of phenotypic selection. Applying such weights at the beginning of GS implementation is important.  相似文献   

19.
基因组选择及其应用   总被引:1,自引:0,他引:1  
Li HD  Bao ZM  Sun XW 《遗传》2011,33(12):1308-1316
品种选育在农业生产中占有十分重要的地位,育种值估计是品种选育的核心。随着遗传标记的发展,尤其是高通量的基因分型技术,使得从基因组水平估计育种值成为可能,即基因组选择。文章将基因组选择的方法分为两类:一是基于估计等位基因效应来预测基因组估计育种值(GEBV),如最小二乘法,随机回归-最佳线性无偏预测(RR-BLUP)、Bayes、主成分分析等方法;二是基于遗传关系矩阵来预测GEBV,通过采用高通量标记构建个体间的遗传关系矩阵,然后用线性混合模型来预测育种值,即GBLUP法,并以这两种分类简要介绍了基因组选择各种方法的大致原理。影响基因组选择准确性的因素主要有标记类型和密度、单倍型长度、参考群体大小和标记-数量性状基因座(QTL)连锁不平衡(LD)大小等;在基因组选择的各种方法中,一般说来Bayes方法和GBLUP方法具有较高的准确性,最小二乘法最差;GBLUP计算速度快,能够将标记和系谱结合起来,因而比其他方法更具优势。尽管基因组选择取得了很大进展,但在理论方面还面临着一些挑战,如联合育种、长期选择的遗传进展及如何解析与性状有关和无关的标记等。基因组选择在一些动植物育种上已经开始应用,在人类遗传倾向预测和进化动力学研究中也有潜在的应用前景。基因组选择在个体间亲缘关系的量化上有了突破,比传统方法更加精确,因此,基因组选择将会是动植物育种史上革命性的事件。  相似文献   

20.
《Genomics》2021,113(3):1070-1086
An increase in the rate of crop improvement is essential for achieving sustained food production and other needs of ever-increasing population. Genomic selection (GS) is a potential breeding tool that has been successfully employed in animal breeding and is being incorporated into plant breeding. GS promises accelerated breeding cycles through a rapid selection of superior genotypes. Numerous empirical and simulation studies on GS and realized impacts on improvement in the crop yields are recently being reported. For a holistic understanding of the technology, we briefly discuss the concept of genetic gain, GS methodology, its current status, advantages of GS over other breeding methods, prediction models, and the factors controlling prediction accuracy in GS. Also, integration of speed breeding and other novel technologies viz. high throughput genotyping and phenotyping technologies for enhancing the efficiency and pace of GS, followed by its prospective applications in varietal development programs is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号