首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Chronic ethanol administration enhances rat brain 5-hydroxytryptamine synthesis by increasing the availability of circulating tryptophan to the brain. This increased availability is not insulin-mediated or lipolysis-dependent. 2. Under these conditions, tryptophan accumulates in the liver and apo-(tryptophan pyrrolase) activity is completely abolished, but could be restored by administration of regenerators of liver NAD+ and/or NADP+. 3. All four regenerators used (fructose, Methylene Blue, phenazine methosulphate and sodium pyruvate) prevented the ethanol-induced increase in liver tryptophan concentration and the increased availability of tryptophan to the brain. 4. It is suggested that the enhancement of brain tryptophan metabolism by chronic ethanol administration is caused by the decreased hepatic tryptophan pyrrolase activity. The results are briefly discussed in relation to previous work with ethanol. 5. Fructose enhances the conversion of tryptophan into 5-hydroxyindol-3-ylacetic acid in brains of ethanol-treated rats, whereas Methylene Blue inhibits this conversion in both control and ethanol-treated animals.  相似文献   

2.
Acute administration of nicotine hydrogen (+)-tartrate enhances the activity of rat liver tryptophan pyrrolase by a hormonal mechanism. Chronic nicotine treatment inhibits, and subsequent withdrawal enhances, the pyrrolase activity. The inhibition during chronic treatment is not due to a defective apoenzyme synthesis nor a decreased cofactor availability. Regeneration of liver NADP+ in vitro and in vivo reverses the inhibition. Chronic nicotine administration increases the liver NADPH concentration. The above effects of nicotine resemble to a remarkable degree those previously shown for morphine, phenobarbitone and ethanol. All effects are compared, and their possible significance in relation to drug dependence is discussed.  相似文献   

3.
Chronic phenobarbitone administration inhibits the apo-(tryptophan pyrrolase) activity in homogenates of rat liver and subsequent withdrawal enhances the enzyme activity by 2.5-fold. Similar effects have been previously produced by chronic ethanol administration and withdrawal, but, whereas NADH may cause the ethanol inhibition, that by phenobarbitone may be mediated by NADPH.  相似文献   

4.
1. Chronic administration of glucose or nicotinamide in drinking water inhibits the activity of rat liver tryptophan pyrrolase, and subsequent withdrawal causes an enhancement. The enzyme activity is also inhibited by administration in drinking water of sucrose, but not fructose, which is capable of preventing the glucose effect. 2. The inhibition by glucose or nictinamide is not due to a defective apoenzyme synthesis nor a decreased cofactor availability. 3. The inhibition by nicotinamide is reversed by regeneration of liver NAD+ and NADP+ in vivo by administration of fructose, pyruvate or phenazine methosulphate. Inhibition by glucose is also reversed by the above agents and by NH4Cl. Reversal of inhibition by glucose or nicotinamide is also achieved in vitro by addition of NAD+ or NADP+. 4. Glucose or nicotinamide increases liver [NADPH]. [NADP+] is also increased by nicotinamide. [NADPH] is also increased by sucrose, but not by fructose, which prevents the glucose effect. Phenazine methosulphate prevents the increase in [NADPH] caused by both glucose and nicotinamide. 5. It is suggested that the inhibition of tryptophan pyrrolase activity by glucose or nicotinamide is mediated by both NADPH and NADH.  相似文献   

5.
Chronic administration of pyrazole in the diet of rats does not cause toxicity and prevents the chronic effects of ethanol on: (1) the redox states of the hepatic NAD(P) couples; (2) liver tryptophan pyrrolase activity; (3) brain tryptophan and 5-hydroxytryptamine metabolism.  相似文献   

6.
The lower brain 5-hydroxytryptamine concentration in alcohol-preferring C57BL, compared with -non-preferring CBA, mice is caused by a decrease in circulating tryptophan availability to the brain secondarily to a higher liver tryptophan pyrrolase activity associated with a higher circulating corticosterone concentration. Activity or expression of liver tryptophan pyrrolase and/or their induction by glucocorticoids may be important biological determinants of predisposition to alcohol consumption.  相似文献   

7.
1. Acute administration of ethanol exerts a biphasic effect on the concentrations of rat brain tryptophan, 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid. Both effects are associated with corresponding changes in the availability of circulating free tryptophan. 2. The initial increases in the above concentrations are prevented by ergotamine, are unaltered by allopurinol and are potentiated by theophylline, whereas the later decreases are prevented by both ergotamine and allopurinol. 3. It is suggested that the initial enhancement by ethanol of brain tryptophan metabolism is caused by catecholamine-mediated lipolysis followed by displacement of protein-bound serum tryptophan, whereas the activation of liver tryptophaan pyrrolase, which is produced by the same mechanism, leads to the later decreases in the brain concentrations of tryptophan and its metabolites. 4. The initial effects of ethanol can be reproduced by an equicaloric dose of sucrose, and a comparison of the two treatments alone could therefore be misleading. 5. The effects of ethanol on liver and brain tryptophan metabolism have also been examined in mice, and a comparison of the results with those previously reported suggests that the ethanol effects are strain-dependent.  相似文献   

8.
5-Aminolaevulinate administration to rats inhibits cerebral 5-hydroxytryptamine synthesis by decreasing tryptophan availability to the brain secondarily to activation of hepatic tryptophan pyrrolase. The results show that tryptophan metabolism and disposition can be influenced by changes in liver haem concentration, and are discussed briefly in relation to mood disorders in the hepatic porphyrias.  相似文献   

9.
1. Deoxycorticosterone, which does not enhance tryptophan pyrrolase activity, also fails to alter the concentrations of the NAD(P) couples in livers of fed rats, whereas corticosterone increases both pyrrolase activity and dinucleotide concentrations. 2. Starvation of rats increases serum corticosterone concentration, lipolysis, tryptophan availability to the liver, tryptophan pyrrolase activity and liver [NADP(H)]. Glucose prevents all these changes. 3. The beta-adrenoceptor-blocking agent propranolol prevents the starvation-induced lipolysis and the consequent increase in tryptophan availability to the liver, but does not influence the increase in serum corticosterone concentration, liver pyrrolase activity and [NADP(H)]. 4. Actinomycin D, which prevents the starvation-induced increases in liver pyrrolase activity and [NADP(H)], does not affect those in serum corticosterone concentration and tryptophan availability to the liver. 5. Allopurinol, which blocks the starvation-induced enhancement of pyrrolase activity, also abolishes the increases in liver [NADP(H)], but not those in serum corticosterone concentration or tryptophan availability to the liver. 6. It is suggested that liver tryptophan pyrrolase activity plays an important role in NAD+ synthesis from tryptophan in the rat.  相似文献   

10.
Growth hormone antagonizes the induction of tryptophan pyrrolase and tyrosine amino-transferase by cortisol. We have shown that contrary to previous reports, growth hormone is also capable of antagonizing the induction of these enzymes by tryptophan and alpha-methyl tryptophan. As alpha-methyl tryptophan is not metabolized appreciably in the rat, our data show that growth hormone does not act indirectly through changes in the liver tryptophan content as was suggested previously. Growth hormone decreases the rate of tryptophan catabolism in vivo after induction of tryptophan pyrrolase by tryptophan and alpha-methyl tryptophan. Because the rate of catabolism of a tryptophan is slower in animals treated with growth hormone, tissue tryptophan levels and the rate of synthesis of 5-hydroxyltryptamine in the brain are higher in these animals than in those receiving tryptophan alone. Thus, although tryptophan administration raises brain 5-hydroxytryptamine levels, induction of tryptophan pyrrolase in the liver, by the load, limits the extent and duration of the rise in brain 5-hydroxytryptamine synthesis. This has important implications for the clinical use of tryptophan in psychiatric disorders, where tryptophan is given to produce long-lasting elevations of brain 5-hydroxytryptamine.  相似文献   

11.
1. When assayed in fresh homogenates, guinea-pig liver tryptophan pyrrolase exists only as holoenzyme. It does not respond to agents that activate or inhibit the rat liver enzyme in vitro. Only by aging (for 30min at 5 degrees C) does the guinea-pig enzyme develop a requirement for ascorbate. 2. The guinea-pig liver enzyme is activated by the administration of tryptophan but not cortisol, salicylate, ethanol or 5-aminolaevulinate. 3. The tryptophan enhancement of the guinea-pig liver pyrrolase activity is prevented by 0, 34 and 86% by pretreatment with actinomycin D, cycloheximide or allopurinol respectively. 4. The guinea-pig liver tryptophan pyrrolase is more sensitive to tryptophan administration than is the rat enzyme. On the other hand, the concentrations of tryptophan in sera and livers of guinea pigs are 45-52% less than those in rats. 5. It is suggested that tryptophan may regulate the activity of guinea-pig liver tryptophan pyrrolase by mobilizing a latent form of the enzyme whose primary function is the detoxication of its substrate.  相似文献   

12.
D J Haleem 《Life sciences》1990,47(11):971-979
In previous studies, long term treatment with ethanol has been shown to enhance brain 5-hydroxytryptamine 5-(HT) metabolism by increasing the activity of the regulatory enzyme tryptophan hydroxylase and or availability of circulating tryptophan secondarily to an inhibition of hepatic tryptophan pyrrolase. In the present study ethanol treatment given for two weeks decreased hepatic apo-tryptophan pyrrolase but not total tryptophan pyrrolase activity in rats. Tryptophan levels in plasma and brain did not increase significantly. But there was a marked increase of 5-HT but not 5-hydroxyindoleacetic acid (5-HIAA) concentration in brain, suggesting a possible increase in the activity of tryptophan hydroxylase. The effect of a tryptophan load on brain 5-HT metabolism was therefore compared in controls and ethanol treated rats. One hour after tryptophan injection (50 mg/kg i.p.) plasma concentrations of total and free tryptophan were identical in controls and ethanol treated rats, but the increases of brain tryptophan 5-HT and 5-HIAA were considerably greater in the latter group. The results are consistent with long term ethanol treatment enhancing brain serotonin metabolism and show that brain uptake/utilization of exogenous tryptophan is increased in ethanol treated rats and may be useful to understand the role and possible mechanism of tryptophan/serotonin involvement in mood regulation.  相似文献   

13.
D J Haleem 《Life sciences》1990,47(11):971-979
In previous studies, long term treatment with ethanol has been shown to enhance brain 5-hydroxytryptamine 5-(HT) metabolism by increasing the activity of the regulatory enzyme tryptophan hydroxylase and or availability of circulating tryptophan secondarily to an inhibition of hepatic tryptophan pyrrolase. In the present study ethanol treatment given for two weeks decreased hepatic apo-tryptophan pyrrolase but not total tryptophan pyrrolase activity in rats. Tryptophan levels in plasma and brain did not increase significantly. But there was a marked increase of 5-HT but not 5-hydroxyindoleacetic acid (5-HIAA) concentration in brain, suggesting a possible increase in the activity of tryptophan hydroxylase. The effect of a tryptophan load on brain 5-HT metabolism was therefore compared in controls and ethanol treated rats. One hour after tryptophan injection (50 mg/kg i.p.) plasma concentrations of total and free tryptophan were identical in controls and ethanol treated rats, but the increases of brain tryptophan 5-HT and 5-HIAA were considerably greater in the latter group. The results are consistent with long term ethanol treatment enhancing brain serotonin metabolism and show that brain uptake/utilization of exogenous tryptophan is increased in ethanol treated rats and may be useful to understand the role and possible mechanism of tryptophan/serotonin involvement in mood regulation.  相似文献   

14.
1. The administration of haematin or 5-aminolaevulinate to rat enhances the activity of liver tryptophan pyrrolase; both endogenous and newly formed apoenzymes become strongly haem-saturated. Haem activation does not stabilize tryptophan pyrrolase. 2. Actinomycin D, puromycin or cycloheximide prevent the activation of the enzyme by 5-aminolaevulinate but not that by haematin. The latter is inhibited by haem-destroying porphyrogens. 3. The combined injection of either haematin or 5-aminolaevulinate with cortisol does not produce an additive effect, whereas potentation is observed when tryptophan is jointly given with either the cofactor or the haem precursor. 4. Further experiments on the substrate (tryptophan) mechanism of pyrrolase regulation are reported, and a comparison between this and the cofactor and hormonal mechanisms is made. 5. It is suggested that the substrate mechanism may also involve increased haem synthesis. 6. The role of tryptophan pyrrolase in the utilization of liver haem, and as a possible model for the exacerbation by drugs of human hepatic porphyrias, is discussed.  相似文献   

15.
A A Badawy 《Life sciences》1977,21(6):755-768
The regulation and functions of rat liver tryptophan pyrrolase are reviewed. The enzyme is regulated by four mechanisms: hormonal induction by glucocorticoids, substrate activation and stabilization by tryptophan, cofactor activation by haem and feedback inhibition by NAD(P)H. Possible functions of the pyrrolase are the detoxication of tryptophan and the regulation of brain 5-hydroxytryptamine synthesis, liver haem metabolism, synthesis of nicotinamide-adenine dinucleotides (phosphates) and hepatic gluconeogenesis.It is suggested that the regulation and functions of tryptophan pyrrolase are physiologically interrelated, and that the enzyme may play important roles in vital body processes.  相似文献   

16.
Rat liver tryptophan pyrrolase haem is maximally depleted at 30 min after administration of a 400 mg/kg dose of 2-allyl-2-isopropylacetamide. This depletion lasts for 24 h, by which time 5-aminoleevulinate synthase activity becomes maximally enhanced. 2. though the above maximum depletion of pyrrolase haem (at 0.5h) is also produced by a 100 mg/kg dose of the porphyrogen, this does not enhance synthase activity at 24 h. It and smaller doses, however, cause a smaller but earlier enhancement of synthase activity (maximum at 2 h) and produce a similarly short-lived deplation of pyrrolase haem. 3. The depletion of pyrrolase haem and the enhancement of synthase activity by the porphyrogen are inhibited by compound SKF 525-A and phenazine methosulphate, and are potentiated by nicotinamide but not by phenobarbitone. Phenazine methosulphate and nicotinamide also exert opposite effects on hexobarbital sleeping-time. 4. 2-Allyl-2-isopropylacetamde also the depletes pyrrolase haem in vitro. It does so in liver homogenates of control rats in the presence, and in those of phenobarbitone-treated rats in the absence of added NADPH. 5. A discussion of the present results in relation to previous work with other haemoproteins suggests that, whereas cytochrome P-450 (haem) is primarily involved in the production of the active (porphyrogenic) metabolite(s) of 2-allyl-2-isopropylacetamide, the haem pool used by tryptophan pyrrolase may play an important role in the effects of this compound on haem biosynthesis.  相似文献   

17.
Role of tryptophan pyrrolase in endotoxin poisoning   总被引:6,自引:0,他引:6  
Using substrate induction as a tool, we attempted to determine the role of tryptophan pyrrolase in the response to endotoxin in mice. Previous results have shown that the administration of the ld(50) of endotoxin lowers tryptophan pyrrolase activity. alpha-Methyltryptophan was found to maintain tryptophan pyrrolase activity above control levels in endotoxin-poisoned mice without increasing survival. 5-Hydroxytryptophan, by contrast, lowered tryptophan pyrrolase activity but did not sensitize mice to endotoxin. These results suggest that tryptophan pyrrolase per se does not play a unique role in survival of mice poisoned with endotoxin. This enzyme, however, may reflect the fate of other liver enzymes inducible by adrenocorticoids. In mice given concurrent injections of tryptophan and endotoxin, tryptophan pyrrolase activity was elevated to a level intermediate between that of normal mice and that of mice given tryptophan alone. The mice injected with tryptophan and endotoxin also had about the same mortality as mice given endotoxin alone. Mice treated with tryptophan 4 hr after endotoxin, at a time when the substrate did not fully elevate tryptophan pyrrolase activity, died convulsively and in larger numbers than those given endotoxin alone. This effect was reversed by prior treatment with cyproheptadine, an antiserotonin drug. These results indicate that the depression of tryptophan pyrrolase activity previously observed in vitro after injection of endotoxin reflects an actual decrease in the in vivo activity of the enzyme.  相似文献   

18.
1. Drugs such as phenobarbitone and phenylbutazone, which increase the concentration of microsomal haem and cytochrome P-450, also increase the saturation of rat liver apo-(tryptophan pyrrolase) with its haem activator, as does the haem precursor 5-aminolaevulinate. 2. At 4h after the administration of the porphyrogens 2-allyl-2-isopropylacetamide, 3,5-diethoxycarbonyl-1,4-dihydrocollidine and griseofulvin, the total pyrrolase activity is increased whereas the haem saturation of the apoenzyme is decreased. This decreased saturation is prevented by pretreatment of the animals with the inhibitor of drug-metabolizing enzymes, SKF 525-A. 3. Pretreatment of rats with the above porphyrogens inhibits the rise in holo-(tryptophan pyrrolase) activity produced by subsequent administration of cortisol, tryptophan and 5-aminolaevulinate with two single exceptions, the possible reasons for which are discussed. 4. At 24h after the administration, in starved rats, of a single daily injection of the above porphyrogens for 1 or 2 days, the holoenzyme activity is significantly increased. 5. It is suggested that the saturation of rat liver apo-(tryptophan pyrrolase) with its haem activator can be modified by treatment known to cause destruction, inhibition of synthesis, increased utilization and enhanced synthesis of liver haem. The possible involvement of the latter phenomenon in the aetiology of mental disorders in some patients with porphyria is discussed.  相似文献   

19.
1. Allopurinol (4-hydroxypyrazolo[3,4-d]pyrimidine) selectively inhibits the apotryptophan pyrrolase activity in homogenates of rat liver in vitro and after intraperitoneal administration. The inhibition is abolished by an excess of haematin. The allopurinol metabolite alloxanthine has no effect on the pyrrolase activity in vitro or after administration. Allopurinol also inhibits the activation of the enzyme in vitro by ascorbate, ethanol plus NAD(+), NADH, hypoxanthine or xanthine. It is suggested that these agents cause the conversion of a latent form of the pyrrolase into the apoenzyme, and that xanthine oxidase is not involved in this process. 2. The raised total pyrrolase activity observed after the administration of cortisol, cyclic AMP, tryptophan, salicylate or ethanol is lowered by allopurinol in vitro to the corresponding holoenzyme values. A similar effect is observed when allopurinol is administered shortly before cortisol or cyclic AMP. Pretreatment of rats with allopurinol completely prevents the enhancement of the pyrrolase activities by tryptophan, salicylate or ethanol. 3. It is suggested that allopurinol inhibits rat liver tryptophan pyrrolase activity in vitro and after administration by preventing the conjugation of the apoenzyme with its haem activator. The possible usefulness of combined allopurinol-tryptophan therapy of affective disorders is discussed.  相似文献   

20.
1. The increase in the haem saturation of rat liver tryptophan pyrrolase caused by tryptophan administration was previously shown to be associated with a decrease in 5-aminolaevulinate synthase activity. 2. It is now shown that similar reciprocal effects are caused by palmitate and salicylate, both of which increase tryptophan availability to the liver by direct displacement of the serum-protein-bound amino acid. 3. The reciprocal effects on the former two parameters caused by endotoxin and morphine are associated with an increase in liver tryptophan concentration produced by a lipolysis-dependent, non-esterified fatty acid-mediated, displacement of the serum-protein-bound amino acid. 4. All these changes and those caused by another lipolytic agent, theophylline, are prevented by the β-adrenoceptor-blocking agent propranolol and by the opiate-receptor antagonist naloxone, whose anti-lipolytic nature is demonstrated. 5. High correlation coefficients have been obtained for one or more pairs of the following parameters: serum non-esterified fatty acid concentration, free serum tryptophan concentration, liver tryptophan concentration, liver 5-aminolaevulinate synthase activity, liver holo-(tryptophan pyrrolase) activity and the haem saturation of liver tryptophan pyrrolase. 6. It is suggested that liver tryptophan concentration may play an important role in the regulation of 5-aminolaevulinate synthase synthesis, and that the latter may be subject to control by changes in lipid metabolism and may be influenced by pharmacological agents that affect tryptophan disposition. 7. Preliminary evidence suggests that tryptophan may be bound in the liver and that such a possible binding may control its availability for its hepatic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号