首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antennal lobe of the moth contains several classes of glial cells that are likely to play functional roles in both the developing and mature lobe. In this study, confocal and electron microscopy were used to examine in detail the morphology of two classes of glial cells, those associated with olfactory receptor axons as they course to their targets in the lobe and those that form borders around the synaptic neuropil of the olfactory glomeruli. The former, the nerve-layer glia, have long processes with multiple expansions that enwrap axon fascicles; the latter, the neuropil glia, constitute two subgroups: complex glia with large cell bodies and branching, vellate arbors; and simple glia, with multiple, mostly unbranched processes with many lamellate expansions along their lengths. The processes of complex glia appear to be closely associated with axon fascicles as they enter the glomeruli, while those of the simple glia surround the glomeruli as part of a multi-lamellar glial envelope, their processes rarely invading the synaptic neuropil of the body of the glomerulus. The full morphological development of antennal-lobe glial cells requires more than two-thirds of metamorphic development. During this period, cells that began as cuboidal or spindle-shaped cells that were extensively dye-coupled to one another gradually assume their adult form and, at least under nonstimulated conditions, greatly reduce their coupling. These changes are only weakly dependent on the presence of olfactory receptor axons. Glial processes are somewhat shorter and less branched in the absence of these axons, but basic structure and degree of dye-coupling are unchanged.  相似文献   

2.
Sexually receptive female moths and many other insects releasechemical attractants (sex pheromones) to lure conspecific mates.Recent evidence indicates, moreover, that the odor plume formeddownwind from the female possesses a discontinuous structurethat appears to provide the searching male with orientationcues.Using intracellular methods, we find that many central olfactoryneurons in male moths (Manduca sexta) can track pulsed pheromonalstimuli precisely. The cells respond to each brief odor pulsewith a similarly brief burst of action potentials, and the separationbetween response bursts is aided by inhibitory synaptic input.Furthermore, these neurons appear to participate in at leasttwo levels of ‘feature detection’: they respondselectively to pheromonal stimuli, and they follow pulsed stimulationonly in a limited range of frequencies Above the frequency limit,the cells respond as if the male is stimulated by a prolonged,uniform concentration of pheromone. The ability of these neuronsto encode changes in the temporal characteristics of pheromonalstimuli may provide the male with positional cues to help himlocate the pheromone source over long distances.  相似文献   

3.
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL antennal lobe - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - IPSP inhibitory postsynaptic potential - LN local interneuron - MGC macroglomerular complex - OB olfactory bulb - PN projection neuron - TES N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid  相似文献   

4.
In olfactory systems, neuron-glia interactions have been implicated in the growth and guidance of olfactory receptor axons. In the moth Manduca sexta, developing olfactory receptor axons encounter several types of glia as they grow into the brain. Antennal nerve glia are born in the periphery and enwrap bundles of olfactory receptor axons in the antennal nerve. Although their peripheral origin and relationship with axon bundles suggest that they share features with mammalian olfactory ensheathing cells, the developmental roles of antennal nerve glia remain elusive. When cocultured with antennal nerve glial cells, olfactory receptor growth cones readily advance along glial processes without displaying prolonged changes in morphology. In turn, olfactory receptor axons induce antennal nerve glial cells to form multicellular arrays through proliferation and process extension. In contrast to antennal nerve glia, centrally derived glial cells from the axon sorting zone and antennal lobe never form arrays in vitro, and growth-cone glial-cell encounters with these cells halt axon elongation and cause permanent elaborations in growth cone morphology. We propose that antennal nerve glia play roles similar to olfactory ensheathing cells in supporting axon elongation, yet differ in their capacity to influence axon guidance, sorting, and targeting, roles that could be played by central olfactory glia in Manduca.  相似文献   

5.
The steroid hormone 20-hydroxyecdysone (20-HE) controls diverse aspects of neuronal differentiation during metamorphosis in the hawkmoth Manduca sexta. In the present study we have examined the effect of 20-HE on glial cells of the brain during the metamorphic period. The antennal (olfactory) lobe of Manduca provides an ideal system in which to study effects of hormones on glial cells, since three known classes of glial cells participate in its development, and at least one type is critically important for establishment of normal neuronal morphology. These glial cells, associated with the neuropil, form boundaries for developing olfactory glomeruli as a result of proliferation and migration. We determined whether glial cells proliferate in response to 20-HE by injecting a pulse of 20-HE into the hemolymph at different stages of development and monitoring proliferation of all three types of glial cells. Hormone injections at the beginning and end of metamorphic development, when hormone titers are normally low, did not stimulate proliferation of neuropil-associated glial cells. Injections during the period when hormone titers are normally rising produced significant increases in their proliferation. Injections when hormone titers are normally high were ineffective at enhancing their proliferation. One other class of glial cells, the perineurial cells, also proliferate in response to 20-HE. Thus, glial proliferation in the brain is under the control of steroid hormones during metamorphic development. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Three types of pheromone receptor cells have been identified by electrophysiological recording from single antennal sensilla trichodea of the male sphinx moth Manduca sexta. These cells responded best to the pheromone components (E,Z)-10,12-hexadecadienal (type A receptor cell), (E,E,Z)-10,12,14-hexadecatrienal (type B), and (E,E,E)-10,12,14-hexadecatrienal (type C). Cell type B also responded to (E,Z)-11,13-pentadecadienal, which has been used experimentally as a pheromone substitute. In recordings from 20 trichoid hairs, 17 were found to be innervated by one cell of type A and one of type B; 3 trichoid hairs had cell types A and C.  相似文献   

7.
1. We have used intracellular recording and staining with Lucifer Yellow, followed by reconstruction from serial sections, to characterize the responses and structure of olfactory neurons in the protocerebrum (PC) of the brain of the male sphinx moth Manduca sexta. 2. Many olfactory protocerebral neurons (PCNs) innervate a particular neuropil region lateral to the central body, the lateral accessory lobe (LAL), which appears to be important for processing olfactory information. 3. Each LAL is linked by its constituent neurons to the ipsilateral lateral PC, where projection neurons from the antennal lobe terminate, as well as to other regions of the PC. The LALs are also linked to each other by bilateral neurons with arborizations in each LAL. 4. Some PC neurons showed long-lasting excitation (LLE) that outlasted the olfactory stimuli by greater than or equal to 1 s, and as long as 30 s in some preparations. LLE was more frequently elicited by the sex-pheromone blend than by individual pheromone components. All bilateral neurons that showed LLE had arborizations in the LALs. LLE responses were also recorded in a single local neuron innervating the mushroom body. 5. In some other PC neurons, pheromonal stimuli elicited brief excitations that recovered to background firing rates less than 1 s after stimulation.  相似文献   

8.
Summary We have used a cytochemical technique to investigate the distribution of acetylcholinesterase (AChE) activity in the antenna of the sphinx moth Manduca sexta. High levels of echothiophate-insensitive (presumably intracellular) AChE activity were found in six different types of antennal receptors localized in specific regions of the three antennal segments of the adult moth. Mechanosensory organs in the scape and pedicel, the Böhm bristles and Johnston's organ, are innervated by AChE-positive neurons. In each annulus of the antennal flagellum, AChE-positive neurons are associated with six sensilla chaetica and a peg organ, probably a sensillum styloconicum. At least 112 receptor neurons (8–10 per annulus) innervating the intersegmental membranes between the 14 distalmost annuli also exhibit high levels of echothiophate-resistant AChE. In addition, each annulus has more than 30 AChE-positive somata in the epidermis of the scale-covered (back) side of the flagellum, and 4 AChE-positive somata reside within the first annulus of the flagellum. Since none of the olfactory receptor neurons show a high level of echothiophateresistant AChE activity, and all known mechanoreceptors are AChE-positive, apparently intracellular AChE activity in the antenna correlates well with mechanosensory functions and is consistent with the idea that these cells employ acetylcholine as a neurotransmitter.  相似文献   

9.
1. We have characterized the responses and structure of olfactory descending neurons (DNs) that reside in the protocerebrum (PC) of the brain of male sphinx moths Manduca sexta and project toward thoracic ganglia. 2. Excitatory responses of DNs to pheromone blends were of two general types: (a) brief excitation (BE) that recovered to background in less than 1 s after the stimulus, and (b) long-lasting excitation (LLE) that outlasted the stimulus by greater than or equal to 1 s and, in many cases, as long as 30 s. Individual pheromone components were ineffective in eliciting LLE. 3. Some neurons showing LLE also exhibited state-dependent responses to pheromonal stimuli. When such neurons were in a state of low background firing, stimulation with pheromone blend elicited LLE. When they were in a state of LLE, an identical stimulus reduced firing for 5-10 s after which firing gradually increased to the initial higher level. 4. Thirteen stained DNs were reconstructed from serial sections for detailed analysis of their morphology in the brain. DNs exhibiting LLE had neurites concentrated in the lateral accessory lobes (LALs) in the protocerebrum and adjacent neuropil. Most DNs exhibiting only BE to pheromonal stimuli and other DNs showing responses only to visual or mechanosensory stimuli did not have branches in the LALs.  相似文献   

10.
The influence of olfactory receptor cell (ORC) axons from transsexually grafted antennae on the development of glomeruli in the antennal lobes (ALs), the primary olfactory centers, was studied in the moth Manduca sexta. Normally during metamorphic adult development, the pheromone-specific macroglomerular complex (MGC) forms only in the ALs of males, whereas two lateral female-specific glomeruli (LFGs) develop exclusively in females. A female AL innervated by ORC axons from a grafted male antenna developed an MGC with three glomeruli, like the MGC of a normal male AL. Conversely, a male AL innervated by ORC axons from a grafted female antenna lacked the MGC but exhibited LFGs. ORC axons from grafted male antenna terminated in the MGC-specific target area, even in cases when the antennal nerve (AN) entered the AL via an abnormal route. Within ectopic neuromas formed by ANs that had become misrouted and failed to enter the brain, male-specific axons were not organized and formed terminal branches in many areas. The results suggest the presence of guidance cues within the AL for male-specific ORC axons. Depending on the sex of the antennal innervation, glial borders formed in a pattern characteristic of the MGC or LFGs. The sex-specific number of projection neurons (PNs) in the medial group of AL neurons remained unaffected by the antennal graft, but significant changes occurred in the organization of PN arborizations. In gynandromorphic females, LFG-specific PNs extended processes into the induced MGC, whereas in gynandromorphic males, PNs became restricted to the LFGs. The results indicate that male-and female-specific ORC axons play important roles in determining the position, anatomical features, and innervation of sexually dimorphic glomeruli.  相似文献   

11.
Neuronal pathfinding in developing wings of the moth Manduca sexta   总被引:1,自引:0,他引:1  
The neural pattern of the moth wing is a simple two-dimensional network nestled between the two epithelial monolayers that form the upper and lower surfaces of the wing. All neural elements within the wing blade are sensory and their axons grow proximally toward the mesothoracic ganglion. The sensory nerves of the wing are intimately associated with the basal lamina of the upper epithelial layer; and the molding of neural pattern is coupled with cues in the basal lamina. The global landscape of the basal lamina can be altered by exchange of epithelial grafts. Axons generally cross control grafts as well as grafts that have been displaced distally. However, axons generally avoid grafts that have been transposed proximally. This asymmetric response of growing axons implies that directional cues in the substratum are also asymmetric along the length of the wing. The asymmetric, graded distribution of extracellular matrix molecules associated with the basal lamina of the wing's upper epithelium could provide the short-range cues that guide sensory axons in a particular direction.  相似文献   

12.
Extracellular electrophysiological recordings were made from individual type-A trichoid sensilla on the antenna of the female sphinx moth Manduca sexta. A single annulus of the antenna bears about 1,100 of these sensilla, and each is innervated by two olfactory receptor cells. We tested the responses of these receptor cells to a panel of 102 volatile compounds, as well as three plant-derived odor mixtures, and could discern three different functional types of type-A trichoid sensilla. One subset of receptor cells exhibited an apparently narrow molecular receptive range, responding strongly to only one or two terpenoid odorants. The second subset was activated exclusively by aromatics and responded strongly to two to seven odorants. The third subset had a broad molecular receptive range and responded strongly to odorants belonging to several chemical classes. We also found receptor cells that did not respond to any of the odorants tested but were spontaneously active. Certain odorants elicited excitatory responses in some sensilla but inhibitory responses in others, and some receptor cells were strongly excited by certain odorants but inhibited by others. Impregnation of groups of receptor cells in type-A trichoid sensilla with rhodamine-dextran demonstrated that their axons project mainly to the large female glomeruli of the antennal lobe.  相似文献   

13.
The glial cells of the prothoracic ganglion of the hawk moth Manduca sexta were studied in histological sections of several postembryonic stages and classified according to cell morphology, size, staining properties, and topographical relationships. In general, each glial cell type was found to be confined to one of the major ganglionic domains and each of these domains (i.e., perineurium, cell body rind, glial cover of the neuropil, and neuropil) was found to comprise specific cell types. Some types of glia were recognized in both larval and later stages, but other types were found exclusively from late pupal stages. It is proposed that the higher morphological diversity expressed by the glia of the pharate adult is attained by differentiation of new cell types during metamorphosis. Before the differentiation of new cell types, extensive cell death and cell proliferation seem to occur within some glial subpopulations.  相似文献   

14.
Extracellular electrophysiological recordings were made from individual type-A trichoid sensilla on the antenna of the female sphinx moth Manduca sexta. A single annulus of the antenna bears about 1,100 of these sensilla, and each is innervated by two olfactory receptor cells. We tested the responses of these receptor cells to a panel of 102 volatile compounds, as well as three plant-derived odor mixtures, and could discern three different functional types of type-A trichoid sensilla. One subset of receptor cells exhibited an apparently narrow molecular receptive range, responding strongly to only one or two terpenoid odorants. The second subset was activated exclusively by aromatics and responded strongly to two to seven odorants. The third subset had a broad molecular receptive range and responded strongly to odorants belonging to several chemical classes. We also found receptor cells that did not respond to any of the odorants tested but were spontaneously active. Certain odorants elicited excitatory responses in some sensilla but inhibitory responses in others, and some receptor cells were strongly excited by certain odorants but inhibited by others. Impregnation of groups of receptor cells in type-A trichoid sensilla with rhodamine-dextran demonstrated that their axons project mainly to the large female glomeruli of the antennal lobe.  相似文献   

15.
Antennal lobes of adult male and female Manduca sexta were compared in order to investigate the nature and extent of sexual dimorphism of the primary olfactory center of this lepidopteran species. Complete identification of the glomeruli led to the conclusion that all female glomeruli have homologous male counterparts. Thus, there is no sex-specific glomerulus present in one sex and absent in the other. Sexual dimorphism (i.e. glomeruli present but morphologically different in males and females), however, does occur in the three glomeruli composing the male macroglomerular complex. The female homologs of this complex consist of two previously identified 'large female glomeruli' and one newly identified normal-sized glomerulus. The lateral and medial large female glomeruli are interpreted to be homologous to the first two macroglomerular-complex glomeruli-the cumulus and toroid 1. The third male component, the toroid 2, was tentatively identified with a normal-sized spheroidal glomerulus of the female, called here the 'small female glomerulus'. The 60 'ordinary' glomeruli that make up the rest of the glomerular neuropil were found to be homologous in males and females, with the exception of two anomalous (or uncertain) glomeruli. Some variations in relative position and size observed among those glomeruli suggest a diffuse, quantitative kind of sexual dimorphism.  相似文献   

16.
During adult metamorphosis, the moth olfactory neurons and their glia-like support cells pass through a coordinated and synchronous development. By 60% of development, the olfactory system is anatomically complete, but functional maturation does not occur until about 90% of development. Maturation is characterized by the onset of odorant sensitivity in the sensory neurons and the expression of certain antennal-specific proteins including odorant binding proteins (OBPs) and odorant degrading enzymes (ODEs). The OBPs have been cloned and sequenced, and are thus useful models for investigating the molecular mechanisms coordinating final maturation of the developing olfactory system. The ecdysteroid hormones have been observed to regulate many cellular level neuronal changes during adult metamorphosis. In particular, the late pupal decline in ecdysteroids is known to influence programmed death of nerves and muscles at the end of metamorphoses. Experiments are presented here which indicate that this decline in ecdysteroids also induces the expression of the OBPs. Normal OBP expression occurs 35–40 h before adult emergence. In culture, OBP expression could be induced at least 90 h before adult emergence by the premature removal of ecdysteroid. This premature expression was blocked by culturing tissue in the presence of the biologically active ecdysteroid 20-hydroxyecdysone. These findings suggest that maturation of the olfactory system is regulated by the decline in ecdysteroids, and support the view that olfactory development, in general, may be coordinated by chaging levels of pupal ecdysteroids. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Summary Computer-assisted neuroanatomical methods have been used to demonstrate unique identities of the glomeruli of the antennal lobes (ALs) in males of the sphinx moth Manduca sexta. The glomerular neuropil consists of the male-specific macroglomerular complex, which comprises two closely apposed bulky subunits, and 64±1 ordinary glomeruli arrayed in a shell around a central region of coarse neuropil. Computergenerated maps show the exact locations of all glomeruli and adjacent groups of neuronal somata in a constant Cartesian coordinate system, such that these can be accurately identified in any individual. The glomeruli belong to three classes according to the number and type of identification criteria they satisfy. The larger class comprises glomeruli (n=44) identified only in the computer-generated maps on the basis of their relative positions. The other two classes include glomeruli that were also identified in sections, either directly from their proximity to readily identifiable structures and their shape and size (n=10, including the labial-palp-pit-organ (LPO) glomerulus), or indirectly from their positions relative to the former (n=9). Two very small glomeruli were present in only one AL, demonstrating the existence of anomalous glomeruli, whereas another glomerulus had no homologue in both ALs of one individual. The true number of ordinary glomeruli (per male AL) was thus estimated to be 64. The uncertainty in delineating some glomeruli might affect this number without implying modification of the homologies proposed. The locations of tracts and cell groups, both within and near the AL, are also invariant with respect to glomeruli, as shown in the computer maps. The methods employed are general and might be useful to researchers in related fields. The results obtained call for more attention to the precise geometry of neural structures.  相似文献   

18.
Iterated neuropil modules called glomeruli are characteristic of primary olfactory centers in both vertebrates and invertebrates. To gain insight into the developmental mechanisms underlying the formation of such structured, organized neuropil, we have examined the development of an identified glomerulus in the olfactory (antennal) lobe of the moth Manduca sexta. The labial pit organ glomerulus (LPOG) receives bilateral sensory projections from the labial pit organs in the labial palps of the mouthparts, while other glomeruli in the antennal lobe receive unilateral projections from the antenna. Here, we chronicle the development of the LPOG under normal and perturbed conditions. Our findings suggest that the sensory axons of the labial pit organ, like those of the antenna, induce and shape growth of interneuronal arborizations, but specific features of interneuronal arborizations such as the relative position of glomerular arborizations within the antennal lobe are independent of both classes of afferent innervation. Labial pit organ axons and antennal axons exhibit a high degree of specificity for their respective target regions, independent of the presence or absence of the other class of afferent axon or the route taken to the antennal lobe. Specification of glomerular position is intrinsic to the antennal lobe rather than a consequence of competition between afferent axons. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 28–44, 1999  相似文献   

19.
Iterated neuropil modules called glomeruli are characteristic of primary olfactory centers in both vertebrates and invertebrates. To gain insight into the developmental mechanisms underlying the formation of such structured, organized neuropil, we have examined the development of an identified glomerulus in the olfactory (antennal) lobe of the moth Manduca sexta. The labial pit organ glomerulus (LPOG) receives bilateral sensory projections from the labial pit organs in the labial palps of the mouthparts, while other glomeruli in the antennal lobe receive unilateral projections from the antenna. Here, we chronicle the development of the LPOG under normal and perturbed conditions. Our findings suggest that the sensory axons of the labial pit organ, like those of the antenna, induce and shape growth of interneuronal arborizations, but specific features of interneuronal arborizations such as the relative position of glomerular arborizations within the antennal lobe are independent of both classes of afferent innervation. Labial pit organ axons and antennal axons exhibit a high degree of specificity for their respective target regions, independent of the presence or absence of the other class of afferent axon or the route taken to the antennal lobe. Specification of glomerular position is intrinsic to the antennal lobe rather than a consequence of competition between afferent axons.  相似文献   

20.
Antennal sensory neurons of Manduca sexta emerge from epidermal cells that also give rise to sheath cells surrounding the peripheral parts of the neurons and to glial cells that enwrap the sensory axons in the antennal nerve. Reciprocal interactions between sensory neurons and glial cells are believed to aid in axon growth and guidance, but the exact nature of these interactions is not known. We investigated the possibility of cholinergic interactions in this process by locating muscarinic acetylcholine receptors (mAChRs) and choline acetyltransferase (ChAT) enzyme in cultured antennal sensory neurons and non-neural cells. ChAT and mAChRs were present in the sensory neurons from the first day in culture. Therefore, the sensory neurons are probably cholinergic, as previously suggested, but they may also be controlled by ACh. In 7-day-old cultures a subgroup of small non-neural cells with processes expressed ChAT activity, and in 14-day-old cultures non-neural cells that formed lamellipodia and scaffoldlike structures on the culture substrate were labeled with ChAT antibody. mAChR activity was detected in similar non-neural cells but only in areas surrounding the nuclei. In addition, mAChRs were found in flat lamellipodia and filopodia forming cells that were present in 1-day-old cultures and grew in size during the 2 week investigation period. These findings suggest muscarinic cholinergic interactions between the neural and non-neural cells during the development of Manduca antenna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号