首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fas ligand (FasL, CD95L, APO-1L, CD178, TNFSF6, APT1LG1) is the key death factor of receptor-triggered programmed cell death in immune cells. FasL/Fas-dependent apoptosis plays a pivotal role in activation-induced cell death, termination of immune responses, elimination of autoreactive cells, cytotoxic effector function of T and NK cells, and the establishment of immune privilege. Deregulation or functional impairment of FasL threatens the maintenance of immune homeostasis and defense and results in severe autoimmunity. In addition, FasL has been implicated as an accessory or costimulatory receptor in T cell activation. The molecular mechanisms underlying this reverse signaling capacity are, however, poorly understood and still controversially discussed. Many aspects of FasL biology have been ascribed to selective protein-protein interactions mediated by a unique polyproline region located in the membrane-proximal intracellular part of FasL. Over the past decade, we and others identified a large number of putative FasL-interacting molecules that bind to this polyproline stretch via Src homology 3 or WW domains. Individual interactions were analyzed in more detail and turned out to be crucial for the lysosomal storage, the transport and the surface appearance of the death factor and potentially also for reverse signaling. This review summarizes the work in the framework of the Collaborative Research Consortium 415 (CRC 415) and provides facts and hypotheses about FasL-interacting proteins and their potential role in FasL biology.  相似文献   

2.
Skelemin is a large cytoskeletal protein critical for cell morphology. Previous studies have suggested that its two-tandem immunoglobulin C2-like repeats (SkIgC4 and SkIgC5) are involved in binding to integrin beta3 cytoplasmic tail (CT), providing a mechanism for skelemin to regulate integrin-mediated signaling and cell spreading. Using NMR spectroscopy, we have studied the molecular details of the skelemin IgC45 interaction with the cytoplasmic face of integrin alphaIIbbeta3. Here, we show that skelemin IgC45 domains form a complex not only with integrin beta3 CT but also, surprisingly, with the integrin alphaIIb CT. Chemical shift mapping experiments demonstrate that both membrane-proximal regions of alphaIIb and beta3 CTs are involved in binding to skelemin. NMR structural determinations, combined with homology modeling, revealed that SkIgC4 and SkIgC5 both exhibited a conserved Ig-fold and both repeats were required for effective binding to and attenuation of alphaIIbbeta3 cytoplasmic complex. These data provide the first molecular insight into how skelemin may interact with integrins and regulate integrin-mediated signaling and cell spreading.  相似文献   

3.
Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.  相似文献   

4.
The human papillomavirus (HPV) E6 oncoprotein is fundamental to the ability of these viruses to induce human malignancy. A defining characteristic of the HPV E6 oncoproteins found in cancer-causing HPV types is the presence of a PDZ binding motif at their extreme C-terminus. Through this motif, E6 is able to interact with a large number of cellular proteins that contain PDZ domains. Many of these cellular proteins are involved in regulation of processes associated with the control of cell attachment, cell proliferation, cell polarity and cell signaling. How E6 targets multiple proteins containing the same recognition domain is still an open question. In this review, we highlight aspects of E6 function and biology that help to answer this question, and thereby provide insight into the role of these substrates during development of HPV-induced malignancy.  相似文献   

5.
Members of the newly discovered regulator of G protein signaling (RGS) families of proteins have a common RGS domain. This RGS domain is necessary for conferring upon RGS proteins the capacity to regulate negatively a variety of Galpha protein subunits. However, RGS proteins are more than simply negative regulators of signaling. RGS proteins can function as effector antagonists, and recent evidence suggests that RGS proteins can have positive effects on signaling as well. Many RGS proteins possess additional C- and N-terminal modular protein-binding domains and motifs. The presence of these additional modules within the RGS proteins provides for multiple novel regulatory interactions performed by these molecules. These regions are involved in conferring regulatory selectivity to specific Galpha-coupled signaling pathways, enhancing the efficacy of the RGS domain, and the translocation or targeting of RGS proteins to intracellular membranes. In other instances, these domains are involved in cross-talk between different Galpha-coupled signaling pathways and, in some cases, likely serve to integrate small GTPases with these G protein signaling pathways. This review discusses these C- and N-terminal domains and their roles in the biology of the brain-enriched RGS proteins. Methods that can be used to investigate the function of these domains are also discussed.  相似文献   

6.
7.
New insights into nitric oxide metabolism and regulatory functions   总被引:1,自引:0,他引:1  
Nitric oxide (NO) has been intensively studied to elucidate the role of this enigmatic signaling molecule in plant development, metabolism and disease responses. Many studies using pharmacological and biochemical tools have demonstrated that NO functions in hormone responses, programmed cell death, defense gene induction and signal transduction pathways. NO originates from two sources in plants: nitrite and arginine. Recent studies using mutants and transgenic plants have confirmed these key findings and have gone further to identify (i) a new mechanism to modulate NO bioactivity involving hemoglobin, (ii) a gene involved in arginine-dependent NO synthesis, and (iii) a novel function for NO signaling in flowering. These findings continue to elucidate the expanding role of NO in plant biology.  相似文献   

8.
Redox networks in the cell integrate signaling pathways that control metabolism, energetics, cell survival, and death. The physiological second messengers that modulate these pathways include nitric oxide, hydrogen peroxide, and electrophiles. Electrophiles are produced in the cell via both enzymatic and nonenzymatic lipid peroxidation and are also relatively abundant constituents of the diet. These compounds bind covalently to families of cysteine-containing, redox-sensing proteins that constitute the electrophile-responsive proteome, the subproteomes of which are found in localized intracellular domains. These include those proteins controlling responses to oxidative stress in the cytosol—notably the Keap1-Nrf2 pathway, the autophagy-lysosomal pathway, and proteins in other compartments including mitochondria and endoplasmic reticulum. The signaling pathways through which electrophiles function have unique characteristics that could be exploited for novel therapeutic interventions; however, development of such therapeutic strategies has been challenging due to a lack of basic understanding of the mechanisms controlling this form of redox signaling. In this review, we discuss current knowledge of the basic mechanisms of thiol-electrophile signaling and its potential impact on the translation of this important field of redox biology to the clinic. Emerging understanding of thiol-electrophile interactions and redox signaling suggests replacement of the oxidative stress hypothesis with a new redox biology paradigm, which provides an exciting and influential framework for guiding translational research.  相似文献   

9.
BAR and ENTH domains are families of alpha-helical lipid bilayer binding modules found in proteins that function in endocytosis, actin regulation and signaling. Several members of these families not only bind the bilayer, but also participate in the regulation of its curvature. These properties are thought to play physiological roles at sites of membrane budding and at other sites where narrow tubular membranes occur in vivo. Studies of BAR and ENTH domains and of their flanking regions have provided new insights into mechanisms of membrane deformation and curvature sensing, and have emphasized the importance of amphipathic helices, thought to intercalate in one of the leaflets of the lipid bilayer, in the generation of membrane curvature. Structural studies and database searches are rapidly expanding the BAR and ENTH domains families, with the identification of new related domains and subfamilies, such as F-BAR (also called EFC) domains and ANTH domains, respectively. Here we present a short overview of the properties of these domains based on evidence obtained from genetics, cell biology, biochemistry and structural biology.  相似文献   

10.
11.
The above ground organs of plants are generated by the shoot apical meristem. Cellular characteristics and molecular markers indicate that the shoot meristem is patterned into domains with different functions, with stem cells residing in the outer three cell layers of the central zone of the meristem. The boundaries of the domains are determined by positional signals. Here we will discuss our current understanding of the signaling network involved in determining stem cell fate and in setting the boundaries of the stem cell niche at the plant shoot apex.  相似文献   

12.
Ephrins are cell surface-associated ligands for Eph receptors and are important regulators of morphogenic processes such as axon guidance and angiogenesis. Transmembrane ephrinB ligands act as "receptor-like" signaling molecules, in part mediated by tyrosine phosphorylation and by engagement with PDZ domain proteins. However, the underlying cell biology and signaling mechanisms are poorly understood. Here we show that Src family kinases (SFKs) are positive regulators of ephrinB phosphorylation and phosphotyrosine-mediated reverse signaling. EphB receptor engagement of ephrinB causes rapid recruitment of SFKs to ephrinB expression domains and transient SFK activation. With delayed kinetics, ephrinB ligands recruit the cytoplasmic PDZ domain containing protein tyrosine phosphatase PTP-BL and are dephosphorylated. Our data suggest the presence of a switch mechanism that allows a shift from phosphotyrosine/SFK-dependent signaling to PDZ-dependent signaling.  相似文献   

13.
In this issue of Structure, Springer and colleagues argue that ancient extracellular domains of archaea involved in primitive cell adhesion have evolved into the extracellular domains of cell signaling molecules essential for the survival of animals and humans.  相似文献   

14.
Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein–protein and protein–RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.  相似文献   

15.
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease that shows minimal response to chemotherapy. Genetic changes involved in the progression of PDAC concern genes that encode proteins related to signal transduction networks. This fact reveals the importance in identifying the role and the relations between multiple signaling cascades in PDAC. One of the major factors that modulate signaling events is multidomain scaffold proteins that function by binding several proteins simultaneously, inducing their proximity and influencing the outcome of signaling. A particular group among them, containing multiple Src homology 3 (SH3) domains that can bind proteins containing proline-rich motifs, was associated to different aspects of cancer cell homeostasis. In this work, using a microarray-based analysis, we have shown that 13 multiple SH3 domain containing scaffold proteins are expressed in PDAC cells. Using a yeast two-hybrid approach, we have identified proteins that interact with these adaptor proteins. Among them we have found several molecules that modulate cell proliferation and survival (CIZ1, BIRC6, RBBP6), signaling (LTBP4, Notch2, TOM1L1, STK24) and membrane dynamics (PLSCR1, DDEF2, VCP). Our results indicate that interactions mediated by multi-SH3 domain-containing proteins could lead to the formation of dynamic protein complexes that function in pancreatic cancer cell signaling. The identification of such protein complexes is of paramount importance in deciphering pancreatic cancer biology and designing novel therapeutic approaches.  相似文献   

16.
PSI domains are cysteine-rich modules found in extracellular fragments of hundreds of signaling proteins, including plexins, semaphorins, integrins, and attractins. Here, we report the solution structure of the PSI domain from the human Met receptor, a receptor tyrosine kinase critical for proliferation, motility, and differentiation. The structure represents a cysteine knot with short regions of secondary structure including a three-stranded antiparallel beta-sheet and two alpha-helices. All eight cysteines are involved in disulfide bonds with the pattern consistent with that for the PSI domain from Sema4D. Comparison with the Sema4D structure identifies a structurally conserved core comprising the N-terminal half of the PSI domain. Interestingly, this part links adjacent SEMA and immunoglobulin domains in the Sema4D structure, suggesting that the PSI domain serves as a wedge between propeller and immunoglobulin domains and is responsible for the correct positioning of the ligand-binding site of the receptor.  相似文献   

17.
Ras isoform-specific signaling from the plasma membrane appears to be regulated by interactions with distinct functional microdomains. We have developed protocols allowing the generation of 2-D spatial maps describing cell surface microdomain distributions. The combined electron microscopic (EM)-statistics approach provides nanometer scale resolution allowing both inner and outer leaflet domains to be visualized and cross-correlated with each other or with a protein of interest. In particular, the technique has allowed the interaction of Ras isoforms with signaling microdomains and proteins regulating these compartments to be screened. By allowing detailed monitoring of cell surface organization and compartmentalization, the approach has widespread potential for studies of plasma membrane-dependent cell biology, including regulated signaling and membrane trafficking.  相似文献   

18.
Cell adhesion is an important process during morphogenesis, differentiation, and homeostasis in cell biology. The role of vascular endothelial growth factor (VEGF) in cell adhesion of keratinocytes is unclear. In our study, a human keratinocyte cell line, HaCaT cells, which mimics various properties of normal epidermal keratinocytes, was included to elucidate the effect of VEGF on cell-cell adhesion and cell-plate adhesion. Expression of adhesion molecules account for cell adhesion and signal transduction pathways involved in the effect of VEGF on adhesion of HaCaT cells were further investigated. Significant increase of cell-cell adhesion but decrease of the cell-plate adhesion of HaCaT cells induced by VEGF(165) was detected. VEGF increases expression of E-cadherin, but inhibits expression of integrin α6β4 subunit. VEGF(165) at 100?ng/ml activates extracellular signal-regulated kinase. These changes of cell adhesion induced by VEGF were blocked by ERK and VEGFR-2 inhibitor. Our findings suggest that VEGF may modulate cell adhesion of HaCaT cells partly through activation of VEGFR-2/ERK1/2 signaling pathways.  相似文献   

19.
Recent work on WW domain-containing oxidoreductase (WWOX) tumor suppressor is beginning to shed new light on both the molecular mechanism of action of its WW domains as well as the contiguous catalytic domain. Herein, the structural basis underlying the ability of WW1 domain to bind to various physiological ligands and how the orphan WW2 tandem partner synergizes its ligand binding in the context of WW1–WW2 tandem module of WWOX is discussed. Notably, the WW domains within the WW1–WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. In this manner, the association of WW2 domain with WW1 hinders ligand binding to the latter. Consequently, ligand binding to WW1 domain not only results in the displacement of WW2 lid but also disrupts the fixed orientation of WW domains in the liganded conformation. Equally importantly, structure-guided functional approach suggests that the catalytic domain of WWOX likely serves as a retinal oxidoreductase that catalyzes the reversible oxidation and reduction of all-trans-retinal. Collectively, this review provides structural insights into the functional versatility of a key signaling protein with important implications on its biology.  相似文献   

20.
脆性组氯酸三联体(FHIT)基因定位于染色体的3p14.2,经细胞生物学、肿瘤分子生物学研究,及转基因、基因敲除技术等实验证实其为抑癌基因。FHIT主要通过某种信号途径诱导凋亡,从而抑制肿瘤细胞的增殖。研究认为,FHIT通过FHIT-底物复合物产生抑癌作用。越来越多的研究结果表明FHIT在肿瘤的预防和治疗中具有很好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号