首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S100 proteins are EF-hand calcium-binding proteins with various intracellular functions including cell proliferation, differentiation, migration, and apoptosis. Some S100 proteins are also secreted and exert extracellular paracrine and autocrine functions. Experimental results suggest that the receptor for advanced glycation end products (RAGE) plays important roles in mediating S100 protein-induced cellular signaling. Here we compared the interaction of two S100 proteins, S100B and S100A6, with RAGE by in vitro assay and in culture of human SH-SY5Y neuroblastoma cells. Our in vitro binding data showed that S100B and S100A6, although structurally very similar, interact with different RAGE extracellular domains. Our cell assay data demonstrated that S100B and S100A6 differentially modulate cell survival. At micromolar concentration, S100B increased cellular proliferation, whereas at the same concentration, S100A6 triggered apoptosis. Although both S100 proteins induced the formation of reactive oxygen species, S100B recruited phosphatidylinositol 3-kinase/AKT and NF-kappaB, whereas S100A6 activated JNK. More importantly, we showed that S100B and S100A6 modulate cell survival in a RAGE-dependent manner; S100B specifically interacted with the RAGE V and C(1) domains and S100A6 specifically interacted with the C(1) and C(2) RAGE domains. Altogether these results highlight the complexity of S100/RAGE cellular signaling.  相似文献   

2.
The receptor for advanced glycation end products (RAGE) is a multiligand cell surface macromolecule that plays a central role in the etiology of diabetes complications, inflammation, and neurodegeneration. The cytoplasmic domain of RAGE (C-terminal RAGE; ctRAGE) is critical for RAGE-dependent signal transduction. As the most membrane-proximal event, mDia1 binds to ctRAGE, and it is essential for RAGE ligand-stimulated phosphorylation of AKT and cell proliferation/migration. We show that ctRAGE contains an unusual α-turn that mediates the mDia1-ctRAGE interaction and is required for RAGE-dependent signaling. The results establish a novel mechanism through which an extracellular signal initiated by RAGE ligands regulates RAGE signaling in a manner requiring mDia1.  相似文献   

3.
Receptor for advanced glycation end products (RAGE) mediates neurite outgrowth and cell migration upon stimulation with its ligand, amphoterin. We show here that RAGE-dependent changes in cell morphology are associated with proliferation arrest and changes in gene expression in neuroblastoma cells. Chromogranin B, a component of secretory vesicles in endocrine cells and neurons, was found to be up-regulated by RAGE signaling during differentiation of neuroblastoma cells along with the two other members of the chromogranin family, chromogranin A and secretogranin II. Ligation of RAGE by amphoterin lead to rapid phosphorylation and nuclear localization of cyclic AMP response element-binding protein (CREB), a major regulator of chromogranin expression. Furthermore, inhibition of ERK1/2-Rsk2-dependent CREB phosphorylation efficiently inhibited up-regulation of chromogranin gene expression upon RAGE activation. To further study the effects of RAGE and amphoterin on cellular differentiation, we stimulated embryonic stem cells expressing RAGE or a signaling-deficient mutant of RAGE with amphoterin. Amphoterin was found to promote RAGE-dependent neuronal differentiation of embryonic stem cells characterized by up-regulation of neuronal markers light neurofilament protein and beta-III-tubulin, activation of CREB, and increased expression of chromogranins A and B. These data suggest that RAGE signaling is capable of driving neuronal differentiation involving CREB activation and induction of chromogranin expression.  相似文献   

4.
Fan Y  Chen H  Qiao B  Luo L  Ma H  Li H  Jiang J  Niu D  Yin Z 《Molecules and cells》2007,23(1):30-38
Dipyrithione (2, 2'-dithiobispyridine-1, 1'-dioxide, PTS2), a pyrithione derivate, is highly bactericidal and fungicidal. In this study we examined its apoptotic effect on HeLa cells. PTS2 induced HeLa cell death in a dose and time dependent manner. ERK1/2 and p38 were markedly activated, but little JNK1/2 activation was detected. Suppression of p38 activation by SB203580 reduced the extent of apoptosis of the HeLa cells and also prevented induction of p21, release of cytochrome c, and cleavage of caspase-3 and PARP. Inhibition of ERK1/2 with PD98059 increased apoptosis, indicating that ERK1/2 activation has an anti-apoptotic effect on PTS2-induced HeLa cell apoptosis. PTS2 also inhibited murine sarcoma 180 and hepatoma 22 tumor growth in an animal tumor model. Our findings indicate that PTS2 possesses anti-tumor activity, that caspase-3 and poly (ADP-ribose) polymerase (PARP) are involved in PTS2-induced HeLa cell apoptosis and that ERK1/2 and p38 have opposing effects on this apoptosis.  相似文献   

5.
Calgranulin C (S100A12) is a member of the S100 family of proteins that undergoes a conformational change upon calcium binding allowing them to interact with target molecules and initiate biological responses; one such target is the receptor for advanced glycation products (RAGE). The RAGE-calgranulin C interaction mediates a pro-inflammatory response to cellular stress and can contribute to the pathogenesis of inflammatory lesions. The soluble extracellular part of RAGE (sRAGE) was shown to decrease the inflammation response possibly by scavenging RAGE-activating ligands. Here, by using high resolution NMR spectroscopy, we identified the sRAGE-calgranulin C interaction surface. Ca2+ binding creates two symmetric hydrophobic surfaces on Ca2+-calgranulin C that allow calgranulin C to bind to the C-type immunoglobulin domain of RAGE. Apo-calgranulin C also binds to sRAGE using a completely different surface and with substantially lower affinity, thus underscoring the role of Ca2+ binding to S100 proteins as a molecular switch. By using native gel electrophoresis, chromatography, and fluorescence spectroscopy, we established that sRAGE forms tetramers that bind to hexamers of Ca2+-calgranulin C. This arrangement creates a large platform for effectively transmitting RAGE-dependent signals from extracellular S100 proteins to the cytoplasmic signaling complexes.  相似文献   

6.
The S100P protein has been known to mediate cell proliferation by binding the receptor for advanced glycation end products (RAGE) to activate signaling pathways, such as the extracellular regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. S100P/RAGE signaling is involved in a variety of diseases, such as cancer, metastasis, and diabetes. Cromolyn is an anti-allergy drug that binds S100P to block the interaction between S100P and RAGE. In the present study, we characterized the properties of the binding between cromolyn and calcium-bound S100P using various biophysical techniques. The binding affinity for S100P and cromolyn was measured to be in the millimolar range by fluorescence spectroscopy. NMR-HSQC titration experiments and HADDOCK modeling was employed to determine the spatial structure of the proposed heterotetramer model of the S100P–cromolyn complex. Additional MD simulation results revealed the important properties in the complex stability and conformational flexibility of the S100P–cromolyn complex. This proposed model has provided an understanding of the molecular level interactions of S100P–cromolyn complex.  相似文献   

7.
Interferon gamma (IFNγ) has been demonstrated to inhibit tumor growth in vivo as well as proliferation of multiple types of cultured transformed cells. In this study, we showed that IFNγ promoted progressive death in A431 cells, overexpressing EGF receptor (EGFR). Based on the data provided by evaluating cell morphology, MTT assay, FACS analysis, and cleaved caspase-3 staining we concluded that the major cause of IFNγ-induced A431 cell growth inhibition was not cell cycle arrest, but apoptosis. We investigated a role for the EGFR and ERK1/2 MAPK signaling pathways in IFNγ-induced apoptosis of A431 cells. IFNγ-induced cell death was accompanied by both an increase of the ERK1/2 MAPK activation and a simultaneous reduction of the EGFR activation. Activation of ERK1/2 was crucial for IFNγ-induced cell death because MEK1/2 inhibitors, PD0325901 and U0126 efficiently protected cells from apoptosis by suppressing caspase-3 activation. Even though EGFR tyrosine kinase inhibitor AG1478 also rescued A431 cells from IFNγ-induced apoptosis, unlike MEK1/2 inhibitors, it initiated G1 arrest. Together, these results suggest that sustained inhibition of both EGFR and ERK1/2 leads to significant protection of the cells from IFNγ-induced apoptosis, indicating important roles for the EGFR tyrosine kinase and ERK1/2 MAP-kinases in regulating A431 cell death.  相似文献   

8.
9.
Blood-brain barrier (BBB) breakdown has been determined to play a critical role in the pathogenesis of Alzheimer's disease (AD). However, the underlying mechanisms of BBB disruption in AD remain unclear. Our previous study suggested that the receptor for advanced glycation end-products (RAGE) functioned as a signal transduction receptor in Aβ1–42-induced damage in endothelial cells. In our present study, we revealed that RAGE-mediated endoplasmic reticulum stress (ERS) is essential for Aβ-induced endothelial cell damage. Here, we found that Aβ1–42 activated ERS by upregulation of Grp78, xbp-1 and CHOP in endothelial cells and that Aβ1–42-resulted lesions, including the upregulations of caspase-12 and caspase-3, the augment of bax/bcl-2 ratio, and the downregulations of ZO-1 and Occludin in bEnd.3 cells, were ameliorated by the pretreatment of salubrinal, an ERS inhibitor. Furthermore, the expressions of Grp78, xbp-1 and CHOP induced by Aβ1–42 were blocked by transfection of RAGE small interfering RNA (siRNA), which indicated that Aβ1–42 activated ERS in a RAGE-dependent manner. Additionally, bEnd.3 cells transfected with RAGE siRNA showed lower expressions of caspase-12 and caspase-3, decreased bax/bcl-2 ratio, and higher expressions of ZO-1 and Occludin following Aβ1-42 treatment, comparing to control cells. In conclusion, our data demonstrated that Aβ1–42 induced endothelial cells damage via activation of ERS in a RAGE-dependent manner.  相似文献   

10.
Galectin-1 and galectin-3 are the most ubiquitously expressed members of the galectin family and more importantly, these two molecules are shown to have opposite effects on pro-inflammatory responses and/or apoptosis depending on the cell type. Herein, we demonstrate for the first time that galectin-3 induces mast cell apoptosis. Mast cells expressed substantial levels of galectin-3 and galectin-1 and to a lesser extent the receptor for advanced glycation end products (RAGE) on their surfaces. Treatment of cells with galectin-3 at concentrations of > or =100 nM for 18-44 h resulted in cell death by apoptosis. Galectin-3-induced apoptosis was completely prevented by lactose, neutralizing antibody to RAGE, and the caspase-3 inhibitor z-DEVD-fmk. Galectin-3-induced apoptosis was also completely abolished by dithiothreitol and superoxide dismutase, but not inhibited by catalase. Moreover, galectin-3 but not galectin-1 induced the release of superoxide, which was blocked by lactose, anti-RAGE, and dithiothreitol. Finally, galectin-3-induced apoptosis was blocked by bongkrekic acid, an antagonist of the mitochondrial permeability transition pore (PTP), while atractyloside, an agonist of the PTP, greatly facilitated galectin-1-induced apoptosis. These data suggest that galectin-3 induces oxidative stress, PTP opening, and the caspase-dependent death pathway by binding to putative surface receptors including RAGE via the carbohydrate recognition domain.  相似文献   

11.
S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner   总被引:3,自引:0,他引:3  
S100B, a Ca(2+)-modulated protein with both intracellular and extracellular regulatory roles, is most abundant in astrocytes, is expressed in various amounts in several non-nervous cells and is also found in normal serum. Astrocytes secrete S100B, and extracellular S100B exerts trophic and toxic effects on neurons depending on its concentration, in part by interacting with the receptor for advanced glycation end products (RAGE). The presence of S100B in normal serum and elevation of its serum concentration in several non-nervous pathological conditions suggest that S100B-expressing cells outside the brain might release the protein and S100B might affect non-nervous cells. Recently we reported that at picomolar to nanomolar doses S100B inhibits rat L6 myoblast differentiation via inactivation of p38 kinase in a RAGE-independent manner. We show here that at >or=5 nM in the absence of and at >100 nM in the presence of serum S100B causes myoblast apoptosis via stimulation of reactive oxygen species (ROS) production and inhibition of the pro-survival kinase, extracellular signal-regulated kinase (ERK)1/2, again in a RAGE-independent manner. Together with our previous data, the present results suggest that S100B might participate in the regulation of muscle development and regeneration by two independent mechanism, i.e., by inhibiting crucial steps of the myogenic program at the physiological levels found in serum and by causing elevation of ROS production and myoblast apoptosis following accumulation in serum and/or muscle extracellular space. Our data also suggest that RAGE has no role in the transduction of S100B effects on myoblasts, implying that S100B can interact with more than one receptor to affect its target cells.  相似文献   

12.
13.
The receptor for advanced glycation end products (RAGE) is a signaling receptor protein of the immunoglobulin superfamily implicated in multiple pathologies. It binds a diverse repertoire of ligands, but the structural basis for the interaction of different ligands is not well understood. We earlier showed that carboxylated glycans on the V‐domain of RAGE promote the binding of HMGB1 and S100A8/A9. Here we study the role of these glycans on the binding and intracellular signaling mediated by another RAGE ligand, S100A12. S100A12 binds carboxylated glycans, and a subpopulation of RAGE enriched for carboxylated glycans shows more than 10‐fold higher binding potential for S100A12 than total RAGE. When expressed in mammalian cells, RAGE is modified by complex glycans predominantly at the first glycosylation site (N25IT) that retains S100A12 binding. Glycosylation of RAGE and maximum binding sites for S100A12 on RAGE are also cell type dependent. Carboxylated glycan‐enriched population of RAGE forms higher order multimeric complexes with S100A12, and this ability to multimerize is reduced upon deglycosylation or by using non‐glycosylated sRAGE expressed in E. coli. mAbGB3.1, an antibody against carboxylated glycans, blocks S100A12‐mediated NF‐κB signaling in HeLa cells expressing full‐length RAGE. These results demonstrate that carboxylated N‐glycans on RAGE enhance binding potential and promote receptor clustering and subsequent signaling events following oligomeric S100A12 binding. J. Cell. Biochem. 110: 645–659, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of many inflammatory, degenerative, and hyperproliferative diseases, including cancer. Previously, we revealed mechanisms of downstream signaling from ligand-activated RAGE, which recruits TIRAP/MyD88. Here, we showed that DNAX-activating protein 10 (DAP10), a transmembrane adaptor protein, also binds to RAGE. By artificial oligomerization of RAGE alone or RAGE-DAP10, we found that RAGE-DAP10 heterodimer formation resulted in a marked enhancement of Akt activation, whereas homomultimeric interaction of RAGE led to activation of caspase 8. Normal human epidermal keratinocytes exposed to S100A8/A9, a ligand for RAGE, at a nanomolar concentration mimicked the pro-survival response of RAGE-DAP10 interaction, although at a micromolar concentration, the cells mimicked the pro-apoptotic response of RAGE-RAGE. In transformed epithelial cell lines, A431 and HaCaT, in which endogenous DAP10 was overexpressed, and S100A8/A9, even at a micromolar concentration, led to cell growth and survival due to RAGE-DAP10 interaction. Functional blocking of DAP10 in the cell lines abrogated the Akt phosphorylation from S100A8/A9-activated RAGE, eventually leading to an increase in apoptosis. Finally, S100A8/A9, RAGE, and DAP10 were overexpressed in the psoriatic epidermis. Our findings indicate that the functional interaction between RAGE and DAP10 coordinately regulates S100A8/A9-mediated survival and/or apoptotic response of keratinocytes.  相似文献   

15.
We report that prosaposin binds to U937 and is active as a protective factor on tumor necrosis factor alpha (TNFalpha)-induced cell death. The prosaposin-derived saposin C binds to U937 cells in a concentration-dependent manner, suggesting that prosaposin behaves similarly. Prosaposin binding induces U937 cell death prevention, reducing both necrosis and apoptosis. This effect was inhibited by mitogen-activated protein ERK kinase (MEK) and sphingosine kinase (SK) inhibitors, indicating that prosaposin prevents cell apoptosis by activation of extracellular signal-regulated kinases (ERKs) and sphingosine kinase. Prosaposin led to rapid ERK phosphorylation in U937 cells as detected by anti-phospho-p44/42 mitogen-activated protein (MAP) kinase and anti-phosphotyrosine reactivity on ERK immunoprecipitates. It was partially prevented by apo B-100 and pertussis toxin (PT), suggesting that both lipoprotein receptor-related protein (LRP) receptor and Go-coupled receptor may play a role in the prosaposin-triggered pathway. Moreover, sphingosine kinase activity was increased by prosaposin treatment as demonstrated by the enhanced intracellular formation of sphingosine-1-phosphate (S-1-P). The observation that the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin prevented the prosaposin effect on cell apoptosis suggests that sphingosine kinase exerts its anti-apoptotic activity by the PI3K-Akt pathway. Thus, cell apoptosis prevention by prosaposin occurs through ERK phosphorylation and sphingosine kinase. The biological effect triggered by prosaposin might be extended to primary cells because it triggers Erk phosphorylation in peripheral blood mononuclear cells (PBMCs). This is the first evidence of a biological effect consequent to a signal transduction pathway triggered by prosaposin in cells of non-neurological origin.  相似文献   

16.
Resistance of malignant melanoma cells to Fas-mediated apoptosis is among the mechanisms by which they escape immune surveillance. However, the mechanisms contributing to their resistance are not completely understood, and it is still unclear whether antiapoptotic Bcl-2-related family proteins play a role in this resistance. In this study, we report that treatment of Fas-resistant melanoma cell lines with cycloheximide, a general inhibitor of de novo protein synthesis, sensitizes them to anti-Fas monoclonal antibody (mAb)-induced apoptosis. The cycloheximide-induced sensitization to Fas-induced apoptosis is associated with a rapid down-regulation of Mcl-1 protein levels, but not that of Bcl-2 or Bcl-xL. Targeting Mcl-1 in these melanoma cell lines with specific small interfering RNA was sufficient to sensitize them to both anti-Fas mAb-induced apoptosis and activation of caspase-9. Furthermore, ectopic expression of Mcl-1 in a Fas-sensitive melanoma cell line rescues the cells from Fas-mediated apoptosis. Our results further show that the expression of Mcl-1 in melanoma cells is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) and not by phosphatidylinositol 3-kinase/AKT signaling pathway. Inhibition of ERK signaling with the mitogen-activated protein/ERK kinase-1 inhibitor or by expressing a dominant negative form of mitogen-activated protein/ERK kinase-1 also sensitizes resistant melanoma cells to anti-Fas mAb-induced apoptosis. Thus, our study identifies mitogen-activated protein kinase/ERK/Mcl-1 as an important survival signaling pathway in the resistance of melanoma cells to Fas-mediated apoptosis and suggests that its targeting may contribute to the elimination of melanoma tumors by the immune system.  相似文献   

17.
The Ca(2+)-binding protein of the EF-hand type, S100B, is abundantly expressed in and secreted by astrocytes, and release of S100B from damaged astrocytes occurs during the course of acute and chronic brain disorders. Thus, the concept has emerged that S100B might act an unconventional cytokine or a damage-associated molecular pattern protein playing a role in the pathophysiology of neurodegenerative disorders and inflammatory brain diseases. S100B proinflammatory effects require relatively high concentrations of the protein, whereas at physiological concentrations S100B exerts trophic effects on neurons. Most if not all of the extracellular (trophic and toxic) effects of S100B in the brain are mediated by the engagement of RAGE (receptor for advanced glycation end products). We show here that high S100B stimulates murine microglia migration in Boyden chambers via RAGE-dependent activation of Src kinase, Ras, PI3K, MEK/ERK1/2, RhoA/ROCK, Rac1/JNK/AP-1, Rac1/NF-κB, and, to a lesser extent, p38 MAPK. Recruitment of the adaptor protein, diaphanous-1, a member of the formin protein family, is also required for S100B/RAGE-induced migration of microglia. The S100B/RAGE-dependent activation of diaphanous-1/Rac1/JNK/AP-1, Ras/Rac1/NF-κB and Src/Ras/PI3K/RhoA/diaphanous-1 results in the up-regulation of expression of the chemokines, CCL3, CCL5, and CXCL12, whose release and activity are required for S100B to stimulate microglia migration. Lastly, RAGE engagement by S100B in microglia results in up-regulation of the chemokine receptors, CCR1 and CCR5. These results suggests that S100B might participate in the pathophysiology of brain inflammatory disorders via RAGE-dependent regulation of several inflammation-related events including activation and migration of microglia.  相似文献   

18.
The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.  相似文献   

19.
A complex of two S100 EF-hand calcium-binding proteins S100A8/A9 induces apoptosis in various cells, especially tumor cells. Using several cell lines, we have shown that S100A8/A9-induced cell death is not mediated by the receptor for advanced glycation endproducts (RAGE), a receptor previously demonstrated to engage S100 proteins. Investigation of cell lines either deficient in, or over-expressing components of the death signaling machinery provided insight into the S100A8/A9-mediated cell death pathway. Treatment of cells with S100A8/A9 caused a rapid decrease in the mitochondrial membrane potential (DeltaPsi(m)) and activated Bak, but did not cause release of apoptosis-inducing factor (AIF), endonuclease G (Endo G) or cytochrome c. However, both Smac/DIABLO and Omi/HtrA2 were selectively released into the cytoplasm concomitantly with a decrease in Drp1 expression, which inhibits mitochondrial fission machinery. S100A8/A9 treatment also resulted in decreased expression of the anti-apoptotic proteins Bcl2 and Bcl-X(L), whereas expression of the pro-apoptotic proteins Bax, Bad and BNIP3 was not altered. Over-expression of Bcl2 partially reversed the cytotoxicity of S100A8/A9. Together, these data indicate that S100A8/A9-induced cell death involves Bak, selective release of Smac/DIABLO and Omi/HtrA2 from mitochondria, and modulation of the balance between pro- and anti-apoptotic proteins.  相似文献   

20.
Surface layer (S-layer) proteins are crystalline arrays of proteinaceous subunits present as the outermost component of the cell wall in several Lactobacillus species. The underlying mechanism for how S-layer proteins inhibit pathogen infections remains unclear. To gain insights into the mechanism of the antimicrobial activity of Lactobacillus S-layer proteins, we examined how Lactobacillus S-layer proteins impact Salmonella Typhimurium-induced apoptosis in vitro in Caco-2 human colon epithelial cells. When Caco-2 cells infected with Salmonella Typhimurium SL1344, we found that apoptosis was mediated by activation of caspase-3, but not caspase-1. When Salmonella Typhimurium SL1344 and S-layer proteins were coincubated simultaneously, Caco-2 cell apoptosis was markedly decreased and the cell damage was modified, as evaluated by flow cytometry and microscopy. Detailed analyses showed that the S-layer proteins inhibited the caspase-3 activity and activated the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway. Taken together, these findings suggest that Lactobacillus S-layer proteins protected against Salmonella-induced apoptosis through reduced caspase-3 activation. In addition, Salmonella-induced apoptotic cell damage was modified by S-layer proteins through the ERK1/2 signaling pathway. This mechanism may represent a novel approach for antagonizing Salmonella infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号