共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Schmidt-Mende J Bieck E Hugle T Penin F Rice CM Blum HE Moradpour D 《The Journal of biological chemistry》2001,276(47):44052-44063
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), is believed to form a membrane-associated RNA replication complex together with other nonstructural proteins and as yet unidentified host components. However, the determinants for membrane association of this essential viral enzyme have not been defined. By double label immunofluorescence analyses, NS5B was found in the endoplasmic reticulum (ER) or an ER-like modified compartment both when expressed alone or in the context of the entire HCV polyprotein. The carboxyl-terminal 21 amino acid residues were necessary and sufficient to target NS5B or a heterologous protein to the cytosolic side of the ER membrane. This hydrophobic domain is highly conserved among 269 HCV isolates analyzed and predicted to form a transmembrane alpha-helix. Association of NS5B with the ER membrane occurred by a posttranslational mechanism that was ATP-independent. These features define the HCV RdRp as a new member of the tail-anchored protein family, a class of integral membrane proteins that are membrane-targeted posttranslationally via a carboxyl-terminal insertion sequence. Formation of the HCV replication complex, therefore, involves specific determinants for membrane association that represent potential targets for antiviral intervention. 相似文献
4.
Su-Min Kang 《Biochemical and biophysical research communications》2009,386(1):55-4534
The hepatitis C virus (HCV) core protein is a structural component of the nucleocapsid and has been shown to modulate cellular signaling pathways by interaction with various cellular proteins. In the present study, we investigated the role of HCV core protein in viral RNA replication. Immunoprecipitation experiments demonstrated that the core protein binds to the amino-terminal region of RNA-dependent RNA polymerase (RdRp), which encompasses the finger and palm domains. Direct interaction between HCV RdRp and core protein led to inhibition of RdRp RNA synthesis activity of in vitro. Furthermore, over-expression of core protein, but not its derivatives lacking the RdRp-interacting domain, suppressed HCV replication in a hepatoma cell line harboring an HCV subgenomic replicon RNA. Collectively, our results suggest that the core protein, through binding to RdRp and inhibiting its RNA synthesis activity, is a viral regulator of HCV RNA replication. 相似文献
5.
Membrane association of the RNA-dependent RNA polymerase is essential for hepatitis C virus RNA replication 下载免费PDF全文
Moradpour D Brass V Bieck E Friebe P Gosert R Blum HE Bartenschlager R Penin F Lohmann V 《Journal of virology》2004,78(23):13278-13284
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins. 相似文献
6.
7.
Watashi K Ishii N Hijikata M Inoue D Murata T Miyanari Y Shimotohno K 《Molecular cell》2005,19(1):111-122
Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies. 相似文献
8.
9.
10.
Deval J D'Abramo CM Zhao Z McCormick S Coutsinos D Hess S Kvaratskhelia M Götte M 《The Journal of biological chemistry》2007,282(23):16907-16916
The nucleic acid binding channel of the hepatitis C virus RNA polymerase remains to be defined. Here we employed complementary footprinting techniques and show that the enzyme binds to a newly synthesized duplex of approximately seven to eight base pairs. Comparative analysis of surface topologies of free enzyme versus the nucleoprotein complex revealed certain lysines and arginines that are protected from chemical modification upon RNA binding. The protection pattern helps to define the trajectory of the nucleic acid substrate. Lys(81), Lys(98), Lys(100), Lys(106), Arg(158), Arg(386), and Arg(394) probably interact with the bound RNA. The selective protection of amino acids of the arginine-rich region in helix T points to RNA-induced conformational rearrangements. Together, these findings suggest that RNA-protein interaction through the entire substrate binding channel can modulate intradomain contacts at the C terminus. 相似文献
11.
Liu C Chopra R Swanberg S Olland S O'Connell J Herrmann S 《The Journal of biological chemistry》2004,279(11):10738-10746
Here we examine the ability of seven, 3'-related, short synthetic RNAs to serve as templates for the hepatitis C virus (HCV) polymerase, non-structural protein 5B (NS5B). These RNAs, termed HL, range from 8 to 16 nucleotides in length, each with ACC at the 3' terminus. Interestingly HL12 and longer templates have a predicted secondary structure. Those with one or two unpaired adenylates at the 5'-end of a stem were increased in size by one or two nucleotides, respectively, following incubation with NS5B and UTP. Using labeled template RNA and cold UTP, extension in size could be inhibited by addition of non-labeled template of the same size. This template elongation was not inhibited by cold linear HL10 template unless pGpG was added. Fluorescence anisotropy demonstrated HL14, a template with secondary structure, bound with an apparent K(d) of 22 nm. A linear template, HL10, plus pGpG primer was bound by NS5B with a K(d) of 45 nm, whereas HL10 alone bound with an apparent K(d) of 182 nm. The amplitude of the template extension product was increased by a brief preincubation at 4 degrees C followed by incubation at 23 or 30 degrees C. The nucleotide-mediated increase in size occurred for both templates that required a mismatch or bulge at the 3'-end as well as for those without the mismatch. These results suggest an NS5B active site pocket can readily accommodate short templates with four or five base stems and initiate copy-back replication in the presence of a one nucleotide mismatch. 相似文献
12.
A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase 总被引:1,自引:0,他引:1
Chinnaswamy S Yarbrough I Palaninathan S Kumar CT Vijayaraghavan V Demeler B Lemon SM Sacchettini JC Kao CC 《The Journal of biological chemistry》2008,283(29):20535-20546
Mutational analysis of the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) template channel identified two residues, Trp(397) and His(428), which are required for de novo initiation but not for extension from a primer. These two residues interact with the Delta1 loop on the surface of the RdRp. A deletion within the Delta1 loop also resulted in comparable activities. The mutant proteins exhibit increased double-stranded RNA binding compared with the wild type, suggesting that the Delta1 loop serves as a flexible locking mechanism to regulate the conformations needed for de novo initiation and for elongative RNA synthesis. A similar locking motif can be found in other viral RdRps. Products associated with the open conformation of the HCV RdRp were inhibited by interaction with the retinoblastoma protein but not cyclophilin A. Different conformations of the HCV RdRp can thus affect RNA synthesis and interaction with cellular proteins. 相似文献
13.
Template requirements for de novo RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase on the viral X RNA 总被引:1,自引:0,他引:1 下载免费PDF全文
The hepatitis C virus (HCV)-encoded NS5B protein is an RNA-dependent RNA polymerase which plays a substantial role in viral replication. We expressed and purified the recombinant NS5B of an HCV genotype 3a from Esherichia coli, and we investigated its ability to bind to the viral RNA and its enzymatic activity. The results presented here demonstrate that NS5B interacts strongly with the coding region of positive-strand RNA, although not in a sequence-specific manner. It was also determined that more than two molecules of polymerase bound sequentially to this region with the direction 3' to 5'. Also, we attempted to determine the initiation site(s) of de novo synthesis by NS5B on X RNA, which contains the last 98 nucleotides of HCV positive-strand RNA. The initiation site(s) on X RNA was localized in the pyrimidine-rich region of stem I. However, when more than five of the nucleotides of stem I in X RNA were deleted from the 3' end, RNA synthesis initiated at another site of the specific ribonucleotide. Our study also showed that the efficiency of RNA synthesis, which was directed by X RNA, was maximized by the GC base pair at the penultimate position from the 3' end of the stem. These results will provide some clues to understanding the mechanism of HCV genomic RNA replication in terms of viral RNA-NS5B interaction and the initiation of de novo RNA synthesis. 相似文献
14.
Mosley RT Edwards TE Murakami E Lam AM Grice RL Du J Sofia MJ Furman PA Otto MJ 《Journal of virology》2012,86(12):6503-6511
The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory β-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory β-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus. 相似文献
15.
Wang YK Rigat KL Sun JH Gao M Roberts SB 《Archives of biochemistry and biophysics》2008,470(2):146-152
The enzymatic activity of hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is modulated by the molar ratio of NS5B enzyme and RNA template. Depending on the ratio, either template or enzyme can inhibit activity. Inhibition of NS5B activity by RNA template exhibited characteristics of substrate inhibition, suggesting the template binds to a secondary site on the enzyme forming an inactive complex. Template inhibition was modulated by primer. Increasing concentrations of primer restored NS5B activity and decreased the affinity of template for the secondary site. Conversely, increasing template concentration reduced the affinity of primer binding. The kinetic profiles suggest template inhibition results from the binding of template to a site that interferes with primer binding and the formation of productive replication complexes. 相似文献
16.
17.
Interaction with a ubiquitin-like protein enhances the ubiquitination and degradation of hepatitis C virus RNA-dependent RNA polymerase 总被引:3,自引:0,他引:3 下载免费PDF全文
To identify potential cellular regulators of hepatitis C virus (HCV) RNA-dependent RNA polymerase (NS5B), we searched for cellular proteins interacting with NS5B protein by yeast two-hybrid screening of a human hepatocyte cDNA library. We identified a ubiquitin-like protein, hPLIC1 (for human homolog 1 of protein linking intergrin-associated protein and cytoskeleton), which is expressed in the liver (M. F. Kleijnen, A. H. Shih, P. Zhou, S. Kumar, R. E. Soccio, N. L. Kedersha, G. Gill, and P. M. Howley, Mol. Cell 6: 409-419, 2000). In vitro binding assays and in vivo coimmunoprecipitation studies confirmed the interaction between hPLIC1 and NS5B, which occurred through the ubiquitin-associated domain at the C terminus of the hPLIC1 protein. As hPLICs have been shown to physically associate with two E3 ubiquitin protein ligases as well as proteasomes (Kleijnen et al., Mol. Cell 6: 409-419, 2000), we investigated whether the stability and posttranslational modification of NS5B were affected by hPLIC1. A pulse-chase labeling experiment revealed that overexpression of hPLIC1, but not the mutant lacking the NS5B-binding domain, significantly shortened the half-life of NS5B and enhanced the polyubiquitination of NS5B. Furthermore, in Huh7 cells that express an HCV subgenomic replicon, the amounts of both NS5B and the replicon RNA were reduced by overexpression of hPLIC1. Thus, hPLIC1 may be a regulator of HCV RNA replication through interaction with NS5B. 相似文献
18.
Polymerase of human hepatitis B virus is required for viral replication and pregenomic RNA encapsidation. Using recombinant GST fusion proteins, we show that the terminal protein domain of polymerase can interact specifically with a protein complex containing kinase activity and a tightly associated 35-kD protein (p35). This kinase is termed terminal-protein-associated kinase (TPAK). The phosphoamino acid analysis of phosphorylated p35 demonstrates that TPAK is a serine kinase. Analysis of deletion mutants shows that amino acids 1–95 of the terminal protein domain are required for the interaction with TPAK/p35 and phosphorylation of p35. TPAK/p35 are found predominantly in the cytoplasm. Furthermore, TPAK can be inhibited by heparin and manganese ions, but is resistant to spermidine, DRB, H89 or H7. These results indicate that TPAK is not protein kinase A or protein kinase C. 相似文献
19.
Kim YC Russell WK Ranjith-Kumar CT Thomson M Russell DH Kao CC 《The Journal of biological chemistry》2005,280(45):38011-38019
Protein-RNA interaction plays a critical role in regulating RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp). RNAs of 7 nucleotides (nt) or longer had affinities 5-fold better than an RNA of 5 nt, suggesting a minimal length required for binding. To identify RNA contact sites on the HCV RdRp, a biotinylated 7-nt RNA capable of directing de novo initiation was used in a process that coupled reversible formaldehyde cross-linking, RNA affinity chromatography, and mass spectrometry. By this process, we identified 18 peptides cross-linked to the 7-nt RNA. When these identified peptides were overlaid on the three-dimensional structures of NS5B, most mapped to the fingers subdomain, connecting loops between fingers and thumb subdomains and in the putative RNA binding channel. Two of the identified peptides resided in the active site cavity of the RdRp. Recombinant HCV RdRp with single residue changes in likely RNA contact sites were generated and characterized for effects on HCV RdRp activity. Mutant proteins had significant effects on cross-linking to 7-nt RNA and reduced RNA synthesis in vitro by 2- to 20-fold compared with wild type protein. When the mutations were tested for the replication of HCV RNA in the context of the cells transfected with the HCV subgenomic replicon, all except one prevented colony formation, indicating a defect in HCV RNA replication. These biochemical and functional analyses identified a number of residues in the HCV RdRp that are important for HCV RNA synthesis. 相似文献
20.
Ago H Adachi T Yoshida A Yamamoto M Habuka N Yatsunami K Miyano M 《Structure (London, England : 1993)》1999,7(11):1417-1426