首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Nipecotic acid has been demonstrated to block the gamma-aminobutyric acid transport systems. Previous studies have shown that the uptake system is the first transmitter-specific parameter to appear during the development of the rabbit retina. Use of these observations has been made to study the influence on the development of gamma-aminobutyric acid receptors of altering the uptake mechanism by treating newborn pups with nipecotic acid to block GABA transport. The present study of the in vivo metabolism of [3H]nipecotic acid in the CNS measured the changes in the levels of [3H]nipecotic acid in both adult and newborn rabbit retinas after injection of the label into the vitreal chamber. It was found that the effective half-life of [3H]nipecotic acid in the vitreous is about 5 h for adult tissue and 3 h for newborn. In contrast, all retinal fractions retained the label longer, the effective half-lives being about 60 h (adult) and 45 h (newborn). Further, no labeled metabolites of nipecotic acid were detected in either adult or newborn tissue. This study gives evidence that the degradation of nipecotic acid in nervous tissue is minimal and suggests that, although the rate of clearance is faster in neonates, the fate of nipecotic acid in vivo may be similar in both adult and newborn tissues.  相似文献   

2.
Arousal is an important defense against hypoxia during sleep. Rat pups exhibit progressive arousal impairment (habituation) with multiple hypoxia exposures. The mechanisms are unknown. The medullary raphe (MR) is involved in autonomic functions, including sleep, and receives abundant GABAergic inputs. We hypothesized that inhibiting MR neurons with muscimol, a GABA(A) receptor agonist, or preventing GABA reuptake with nipecotic acid, would impair arousal and enhance arousal habituation and that blocking GABA(A) receptors with bicuculline would enhance arousal and attenuate habituation. Postnatal day 15 (P15) to P25 rat pups were briefly anesthetized, and microinjections with aCSF, muscimol, bicuculline, or nipecotic acid were made into the MR. After a ~30-min recovery, pups were exposed to four 3-min episodes of hypoxia separated by 6 min of normoxia. The time to arousal from the onset of hypoxia (latency) was determined for each trial. Latency progressively increased across trials (habituation) in all groups. The overall latency was greater after muscimol and nipecotic acid compared with aCSF, bicuculline, or noninjected controls. Arousal habituation was reduced after bicuculline compared with aCSF, muscimol, nipecotic acid, or noninjected pups. Increases in latency were mirrored by decreases in chamber [O2] and oxyhemoglobin saturation. Heart rate increased during hypoxia and was greatest in muscimol-injected pups. Our results indicate that the MR plays an important, not previously described, role in arousal and arousal habituation during hypoxia and that these phenomena are modulated by GABAergic mechanisms. Arousal habituation may contribute to sudden infant death syndrome, which is associated with MR serotonergic and GABAergic receptor dysfunction.  相似文献   

3.
GABAergic neurons in the striatum are very sensitive to the effects of ischemia. The progressive decline in striatal GABA following transient forebrain ischemia in gerbils may be secondary to either a decreased production or an increase in reuptake mechanisms or both. The current experiment was designed to evaluate release of GABA by stimulation with K+ or inhibition of its uptake with nipecotic acid or their combination (K+ nipecotic) after repetitive forebrain ischemia in gerbils by in-vivo microdialysis on Days 1, 3, 5, and 14 following the insult. Infusion of nipecotic acid or potassium chloride, resulted in a significant increase in extracellular GABA. This response was significantly decreased in the post-ischemic animals. The synergistic effect of increased GABA concentrations by the infusion of nipecotic acid+potassium chloride seen in the controls was not evident in the post-ischemic animals. In conclusion, though there is a reduction in the extracellular GABA concentrations in the first week following an ischemic insult, restorative mechanisms are operative in the second week as seen by the increasing GABA concentrations.  相似文献   

4.
Various N-methyl derivatives of nipecotic acid and related compounds were tested as inhibitors of gamma-aminobutyric acid (GABA) uptake into mini slices. N-Methylnipecotic acid, N,N-dimethylnipecotic acid, N-methylguvacine, and N-methylnicotinic acid were effective inhibitors. None of them, however, were as potent as nipecotic acid itself. All the effective inhibitors, including nipecotic acid, also inhibited the uptake of L-proline, but to a much lesser extent. Four of the test compounds produced a depressant action on cerebral cortical neurons, but even N-methylisoguvacine, the most potent in this respect, was considerably less active than GABA. None of the test compounds caused any clearly discernible changes in the gross behaviour or appearance of mice in the 1-h period following intramuscular injection. It was concluded that methylation of the N atom of nipecotic acid and its derivatives was unlikely to lead to the development of agents with greater experimental or therapeutic potential than that of nipecotic acid itself, if the action of the agent was dependent on its effects on GABA uptake.  相似文献   

5.
In this study, we disclose the design and synthesis of novel 4-susbtituted nipecotic acid derivatives as inhibitors of the GABA transporter mGAT1. Based on molecular modeling studies the compounds are assumed to adopt a binding pose similar to that of the potent mGAT1 inhibitor nipecotic acid. As substitution in 4-position should not cause an energetically unfavorable orientation of nipecotic acid as it is the case for N-substituted derivatives this is expected to lead to highly potent binders. For the synthesis of novel 4-substituted nipecotic acid derivatives a linear synthetic strategy was employed. As a key step, palladium catalyzed cross coupling reactions were used to attach the required biaryl moieties to the ω-position of the alkenyl- or alkynyl spacers of varying length in the 4-position of the nipecotic acid scaffold. The resulting amino acids were characterized with respect to their binding affinities and inhibitory potencies at mGAT1. Though the biological activities found were generally insignificant to poor, two compounds, one of which possesses a reasonable binding affinity for mGAT1, rac-57, the other a notable inhibitory potency at mGAT4, rac-84, both displaying a slight subtype selectivity for the individual transporters, could be identified.  相似文献   

6.
Summary This review describes a novel class of heterocyclic GABA uptake inhibitor with no affinity for the GABA receptors. The parent compound nipecotic acid is a potent inhibitor of neuronal and glial GABA uptake, and nipecotic acid is a substrate for the transport carriers concerned. The structurally related cyclic amino acids guvacine and cis-4-hydroxynipecotic acid are also potent inhibitors of both GABA transport systems. Even minor structural alterations of these compounds result in considerable or complete loss of activity. Whereas homonipecotic acid is a weak but selective inhibitor of glial GABA uptake, homoguvacine is virtually inactive. Similarly the lower homologues of nipecotic acid and guvacine, -proline and 3-pyrroline-3-carboxylic acid, respectively, show some selectivity with respect to inhibition of glial GABA uptake, but these compounds are much weaker than the parent compounds. The bicyclic compounds THPO and THAO, in which the carboxyl groups of nipecotic acid and homonipecotic acid have been replaced by 3-isoxazolol units are moderately potent and practically specific inhibitors of glial GABA uptake. cis-4-Mercaptonipecotic acid is considerably weaker than the closely related analogue cis-4-hydroxynipecotic acid, but the former compound may interact irreversibly with the GABA transport carriers.The results demonstrate a pronounced substrate specificity of the glial and in particular the neuronal GABA transport system. It is evident that the GABA molecule is transported in a conformation different from that, in which it activates its receptors. These findings are of importance for the development of drugs for selective pharmacological regulation of the functions of central GABA-mediated synapses in certain neurological diseases.  相似文献   

7.
—Nipecotic acid, a potent inhibitor of GABA uptake, is taken up by slices of rat cerebral cortex by a sodium-dependent, ‘high affinity’ system (Km 11 μM), and can be released from these slices by an increased potassium ion concentration in a calcium-dependent manner. Nipecotic acid and GABA appear to be taken up by the same osmotically-sensitive structures. GABA and substances which inhibit GABA uptake also inhibit the uptake of nipecotic acid. GABA can release preloaded nipecotic acid from brain slices, and nipecotic acid can release preloaded GABA. This indicates that GABA and nipecotic acid can be counter-transported using the same mobile carrier. Nipecotic acid appears to have a higher affinity than GABA for this carrier.  相似文献   

8.
Abstract— [14C]Nipecotic acid was accumulated in isolated desheathed rat dorsal root ganglia by a saturable process with K m= 48.8 μ m and V max= 2.2 nmol/g/min. The concentration of l -2.4-diamino-butyric acid required to inhibit the uptake of nipecotic acid by 50% was three times the concentration of β-alanine required to do the same. Light microscopic autoradiography indicated that the sites of uptake of [14C]nipecotic acid were principally confined to satellite glial cells. It is concluded that nipecotic acid is transported by the GABA uptake system in glia but that it has less affinity for this system than GABA.  相似文献   

9.
A method for rapid, automated (less than 5 min), and sensitive (detection limit 50 fmol/10 microliter) determination of gamma-aminobutyric acid (GABA) is described. The method is based on precolumn derivatization with o-phthaldialdehyde/t-butylthiol reagent and separation by reverse-phase HPLC with electrochemical detection under isocratic conditions. A 100 X 4 mm Nucleosil 3 C18 column was used; the mobile phase consisted of 0.15 M sodium acetate, 1 mM EDTA (pH 5.4), and 50% acetonitrile; the flow rate was 0.8 ml/min. The potential of the glassy carbon working electrode was +0.75 V. The method allows for the monitoring of GABA levels in the extracellular fluid sampled by microdialysis as documented in the present study when 0.5 mM nipecotic acid is infused via the probe, or 3-mercaptopropionic acid is injected at a dose of 100 mg/kg i.p. There was a 15-fold increase of extracellular GABA after nipecotic acid, whereas in the second case the inhibition of GABA synthesis was followed by a 74% decrease of GABA as compared to basal levels.  相似文献   

10.
Binding of [3H]nipecotic acid, a proposed marker for GABAergic neurons, was investigated in postmortem human brain by use of a centrifugation assay. Binding was displaceable, apparently saturable, and to a single site, with typical KD and Bmax values of 1.85 microM and 124.2 pmol/mg of protein in the hippocampus. Regional distribution studies indicated a heterogeneous population of [3H]nipecotic acid binding sites with highest concentrations in the lateral globus pallidus. Putamen tissue from four cases of Huntington's disease showed a marked reduction in [3H]nipecotic acid binding. Binding correlated with both age and postmortem delay in the hippocampus. There was an effect of agonal state in which prolonged illness before death apparently caused a reduction in binding. Our results indicate that [3H]nipecotic acid may be used successfully as a marker for neuronal GABAergic uptake sites in human brain, but that the effects of variables such as age, postmortem delay, and agonal state must always be taken into account.  相似文献   

11.
Kinetic analyses indicate that nipecotic acid and cis-3-aminocyclohexane-1-carboxylic acid (cis-3-ACHC) inhibit GABA accumulation by similar mechanisms of action. Both amino acids are competitive inhibitors of particulate GABA accumulation when GABA and the inhibitor are added simultaneously to tissue fractions. However, preincubating the tissue with either amino acid produces noncompetitive inhibition of GABA accumulation at low concentrations of inhibitor and mixed inhibition at higher concentrations. The possible roles of intrasynaptosomal mechanisms and of astroglia in producing these effects are discussed. The most notable difference between cis-3-ACHC and the other amino acid inhibitors of GABA accumulation, such as nipecotic acid, cis-4-OH-nipecotic acid, guvacine, beta-proline, homo-beta-proline, and 2,4-diaminobutyric acid (DABA), is that cis-3-ACHC is approximately 3.5 times more potent as an inhibitor following preincubation. Thus, while cis-3-ACHC does inhibit GABA transport, its major site of action in the synaptosome may be intracellular.  相似文献   

12.
Abstract: To see the effect of a γ-aminobutyric acid GABA uptake inhibitor on the efflux and content of endogenous and labeled GABA, rat cortical slices were first labeled with [3H]GABA and then superfused in the absence or presence of 1 mM nipecotic acid. Endogenous GABA released or remaining in the slices was measured with high performance liquid chromatography, which was also used to separate [3H]GABA from its metabolites. In the presence of 3 mM K+, nipecotic acid released both endogenous and [3H]GABA, with a specific activity four to five times as high as that present in the slices. The release of labeled metabolite(s) of [3H]GABA was also increased by nipecotic acid. The release of endogenous GABA evoked by 50 mM K+ was enhanced fourfold by nipecotic acid but that of [3H]GABA was only doubled when expressed as fractional release. In a medium containing no Ca2+ and 10 mM Mg2+, the release evoked by 50 mMK+ was nearly suppressed in either the absence or the presence of nipecotic acid. In the absence of nipecotic acid electrical stimulation (bursts of 64 Hz) was ineffective in evoking release of either endogenous or [3H]GABA, but in the presence of nipecotic acid it increased the efflux of endogenous GABA threefold, while having much less effect on that of [3H]GABA. Tetrodotoxin (TTX) abolished the effect of electrical stimulation. Both high K+ and electrical stimulation increased the amount of endogenous GABA remaining in the slices, and this increase was reduced by omission of Ca2+ or by TTX. The results suggest that uptake of GABA released through depolarization is of major importance in removing GABA from extracellular spaces, but the enhancement of spontaneous release by nipecotic acid may involve intracellular heteroexchange. Depolarization in the presence of Ca2+ leads to an increased synthesis of GABA, in excess of its release, but the role of this excess GABA remains to be established.  相似文献   

13.
Our study presents the synthesis and structure-activity relationship (SAR) of novel N-substituted nipecotic acid derivatives closely related to DDPM-1457 [(S)-2a], a chemically stable analog of (S)-SNAP-5114 (1), in the pursuit of finding new and potent mGAT4 selective inhibitors. Iminium ion chemistry served as key step for the preparation of the desired, new N-substituted nipecotic acid derivatives containing a variety of different heterocycles attached to the nipecotic acid moiety via a trans-alkene spacer. The target compounds were characterized with regard to their potency at and subtype selectivity for the GABA transporters mGAT1-mGAT4.  相似文献   

14.
The γ-aminobutyric acid (GABA) transporter mGAT4 represents a promising drug target for the treatment of epilepsy and other neurological disorders; however, the lack of highly potent and selective inhibitors for mGAT4 still retards its pharmacological elucidation. Herein, the generation and screening of pseudostatic combinatorial hydrazone libraries at the murine GABA transporter mGAT4 for the search of novel GABA uptake inhibitors is described. The hydrazone libraries contained more than 1100 compounds derived from nipecotic acid derivatives substituted at the 5-position instead, as common, at the 1-position of the core structure. Two hits were found and evaluated, which display potencies in the lower micromolar range at mGAT4 and its human equivalent hGAT3. These compounds possess a lipophilic moiety derived from a biphenyl residue attached to the 5-position of the hydrophilic nipecotic acid moiety via a three-atom spacer. Thus, the novel structures with potencies close to that of the bench mark mGAT4 inhibitor (S)-SNAP-5114 add new insights into the structure–activity relationship of mGAT4 inhibitors and could provide a promising starting point for the development of new mGAT4 inhibitors with even higher potencies.  相似文献   

15.
Inhibitory signaling in the ventral tegmental area (VTA) is involved in the mechanism of action for many drugs of abuse. Although drugs of abuse have been shown to alter extracellular γ-aminobutyric acid (GABA) concentration in the VTA, knowledge on how uptake mechanisms are regulated in vivo is limited. Quantitative (no-net-flux) microdialysis is commonly used to examine the extracellular concentration and clearance of monoamine neurotransmitters, however it is unclear whether this method is sensitive to changes in clearance for amino acid neurotransmitters such as GABA. The purpose of this study was to determine whether changes in GABA uptake are reflected by in vivo extraction fraction within the VTA. Using quantitative (no-net-flux) microdialysis adapted for transient conditions, we examined the effects of local perfusion with the GABA uptake inhibitor, nipecotic acid, in the VTA of Long Evans rats. Basal extracellular GABA concentration and in vivo extraction fraction were 44.4?±?1.9 nM (x-intercepts from 4 baseline regressions using a total of 24 rats) and 0.19?±?0.01 (slopes from 4 baseline regressions using a total of 24 rats), respectively. Nipecotic acid (50 μM) significantly increased extracellular GABA concentration to 170?±?4 nM and reduced in vivo extraction fraction to 0.112?±?0.003. Extraction fraction returned to baseline following removal of nipecotic acid from the perfusate. Conventional microdialysis substantially underestimated the increase of extracellular GABA concentration due to nipecotic acid perfusion compared with that obtained from the quantitative analysis. Together, these results show that inhibiting GABA uptake mechanisms within the VTA alters in vivo extraction fraction measured using microdialysis and that in vivo extraction fraction may be an indirect measure of GABA clearance.  相似文献   

16.
The aims of the present study were to investigate the anticonvulsant activity and behavioral toxicity of FrPbAII using freely moving Wistar rats. Moreover, the effectiveness of this compound against chemical convulsants was compared to that of the inhibitor of the GABAergic uptake, nipecotic acid. Our results show that FrPbAII was effective against seizures induced by the i.c.v. injection of pilocarpine (ED(50) = 0.05 microg/animal), picrotoxin (ED(50) = 0.02 microg/animal), kainic acid (ED(50) = 0.2 microg/animal) and the systemic administration of PTZ (ED(50) = 0.03 microg/animal). The anticonvulsant effect of FrPbAII differed from that of nipecotic acid in potency, as the doses needed to block the seizures were more than 10 folds lower. Toxicity assays revealed that in the rotarod, the toxic dose of the FrPbAII is 1.33 microg/animal, and the therapeutic indexes were calculated for each convulsant. Furthermore, the spontaneous locomotor activity of treated animals was not altered when compared to control animals but differed from the animals treated with nipecotic acid. Still, FrPbAII did not induce changes in any of the behavioral parameters analyzed. Finally, when tested for cognitive impairments in the Morris water maze, the i.c.v. injection of FrPbAII did not alter escape latencies of treated animals. These findings indicate that the novel GABA uptake inhibitor is a potent anticonvulsant with mild side-effects when administered to Wistar rats.  相似文献   

17.
Insect skeletal muscle is relatively insensitive to applied GABA, responses are elicited only when relatively high concentrations of GABA are used (greater than 10(-6) M). Pretreatment of the muscle with the GABA uptake inhibitors nipecotic acid, beta-aminobutyric acid or beta-alanine increases the sensitivity of the muscle to GABA by as much as 1000-fold. The evidence suggests the existence of a GABA uptake mechanism in the insect neuromuscular system which could reside in glial cells.  相似文献   

18.
γ-Amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system (CNS). A malfunction of the GABAergic neurotransmission is connected to several neuronal disorders like epilepsy, Alzheimer’s disease, neuropathic pain, and depression. One possibility to enhance GABA levels in the synaptic cleft is to inhibit mGAT1, one of the four known plasma membrane bound GABA transporters, which is considered the most important GABA transporter subtype, being in charge of the removal of GABA from the synaptic cleft after a neuronal impulse. Lipophilic derivatives of nipecotic acid like Tiagabine (Gabitril®), an approved drug used in add-on therapy of epilepsy, are known to inhibit uptake of mGAT1 with high subtype selectivity and affinity. We synthesized new N-substituted nipecotic acid derivatives with a vinyl ether spacer and an unsymmetrical bis-aromatic residue, which carries fluorine substituents at various positions of the aromatic ring-system. The new compounds were characterized with respect to their potency and subtype selectivity as mGAT1 inhibitors.  相似文献   

19.
—Microelectrophoretic methods were used to study the effects on spinal neurones of a series of conformationally restricted analogues of GABA, most of which are structurally related to musci-mol (3-hydroxy-5-aminomethylisoxazole). 3-Hydroxy-5-(l-aminoethyl)isoxazole and 3-hydroxy-5-(2-aminoethyl)isoxazole were GABA-like depressants comparable in effectiveness with GABA. The inhibitors of GABA uptake 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol and nipecotic acid (piperidine-3-carboxylic acid) reversibly enhanced the depressant action of GABA. 3-Hydroxy-5-dimethylaminomethly-isoxazole, 5,6,7,8-tetrahydro-4H-isoxazolo[4,5-d]azepm-3-ol, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol, and nipecotic acid reversibly antagonized the postsynaptic action of glycine. A structure-activity correlation was made in an indirect attempt to elucidate some comformational requirements for interaction of GABA with its postsynaptic receptor and the binding site of its uptake system. The results seem to indicate that different conformations of GABA are required for these interactions.  相似文献   

20.
Perfusion with high millimolar levels of taurine evoked a long-lasting potentiation (LLP-TAU) of synaptic transmission in the Schaffer-collateral CA1 region of the rat hippocampus. Although LLP-TAU showed some correlations to increases in the total taurine content of hippocampal slices, it could not be blocked by the taurine transport inhibitor guanidinoethanesulfonic acid (GES), which was able to significantly reduce total slice taurine uptake. Inhibition of GABA transport by either nipecotic acid or beta-guanidinopropionate failed to abolish LLP-TAU and had no significant effect on taurine uptake. The combination of GES and nipecotic acid also had no significant effect on LLP-TAU. Experiments with transportable structural analogs of taurine (beta-aminoisobutyric acid, homotaurine, and isethionic acid) suggest that activation of classical taurine transport pathways does not always yield a robust LLP-TAU. Hippocampal LLP-TAU could be significantly attenuated, however, by pre-incubation with submillimolar levels of taurine. In summary, the development of LLP-TAU in the rat hippocampus appears to be associated with the intracellular accumulation rather than the activation of known transporters of taurine, but the precise means of its accumulation remains to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号