首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 692 毫秒
1.
Gene-directed enzyme prodrug therapy (GDEPT) has been investigated as a means of cancer treatment without affecting normal tissues. This system is based on the delivery of a suicide gene, a gene encoding an enzyme which is able to convert its substrate from non-toxic prodrug to cytotoxin. In this experiment, we have developed a targeted suicide gene therapeutic system that is completely contained within tumor-tropic cells and have tested this system for melanoma therapy in a preclinical model. First, we established double stable RAW264.7 monocyte/macrophage-like cells (Mo/Ma) containing a Tet-On? Advanced system for intracellular carboxylesterase (InCE) expression. Second, we loaded a prodrug into the delivery cells, double stable Mo/Ma. Third, we activated the enzyme system to convert the prodrug, irinotecan, to the cytotoxin, SN-38. Our double stable Mo/Ma homed to the lung melanomas after 1?day and successfully delivered the prodrug-activating enzyme/prodrug package to the tumors. We observed that our system significantly reduced tumor weights and numbers as targeted tumor therapy after activation of the InCE. Therefore, we propose that this system may be a useful targeted melanoma therapy system for pulmonary metastatic tumors with minimal side effects, particularly if it is combined with other treatments.  相似文献   

2.
Among the broad array of genes that have been evaluated for tumor therapy, those encoding prodrug activation enzymes are especially appealing as they directly complement ongoing clinical chemotherapeutic regimes. These enzymes can activate prodrugs that have low inherent toxicity using both bacterial and yeast enzymes, or enhance prodrug activation by mammalian enzymes. The general advantage of the former is the large therapeutic index that can be achieved, and of the latter, the non-immunogenicity (supporting longer periods of prodrug activation) and the fact that the prodrugs will continue to have some efficacy after transgene expression is extinguished. This review article describes 13 different prodrug activation schemes developed over the last 15 years, two of which - activation of ganciclovir by viral thymidine kinase and activation of 5-fluorocytosine to 5-fluorouracil - are currently being evaluated in clinical trials. Essentially all of these prodrug activation enzymes mediate toxicity through disruption of DNA replication, which occurs at differentially high rates in tumor cells compared with most normal cells. In cancer gene therapy, vectors target delivery of therapeutic genes to tumor cells, in contrast to the use of antibodies in antibody-directed prodrug therapy. Vector targeting is usually effected by direct injection into the tumor mass or surrounding tissues, but the efficiency of gene delivery is usually low. Thus it is important that the activated drug is able to act on non-transduced tumor cells. This bystander effect may require cell-to-cell contact or be mediated by facilitated diffusion or extracellular activation to target neighboring tumor cells. Effects at distant sites are believed to be mediated by the immune system, which can be mobilized to recognize tumor antigens by prodrug-activated gene therapy. Prodrug activation schemes can be combined with each other and with other treatments, such as radiation, in a synergistic manner. Use of prodrug wafers for intratumoral drug activation and selective permeabilization of the tumor vasculature to prodrugs and vectors should further increase the value of this new therapeutic modality.  相似文献   

3.
Gene therapy is defined as a technology that aims to modify the genetic component of cells to gain therapeutic benefits. Suicide gene therapy (or gene-directed enzyme prodrug therapy [GDEPT]) is a two-step treatment for cancer (especially, solid tumors). In the first step, a gene for a foreign enzyme is delivered to the tumor by a vector. Following the expression of the foreign enzyme, a prodrug is administered during the second step, which is selectively activated in the tumor. This article discusses the principles and the theoretical background of GDEPT. A special emphasis is put on enzyme/prodrug systems developed for GDEPT, the design of prodrugs and the kinetic of their activation, the types and the mechanisms of bystander effect and its immunological implications. The possible strategies to improve GDEPT are also discussed.  相似文献   

4.
Chemotherapeutic tumour targeting using clostridial spores   总被引:4,自引:0,他引:4  
Abstract: The toxicity associated with conventional cancer chemotherapy is primarily due to a lack of specificity for tumour cells. In contrast, intravenously injected clostridial spores exhibit a remarkable specificity for tumours. This is because, following their administration, clostridial spores become exclusively localised to, and germinate in, the hypoxic/necrotic tissue of tumours. This unique property could be exploited to deliver therapeutic agents to tumours. In particular, genetic engineering could be used to endow a suitable clostridial host with the capacity to produce an enzyme within the tumour which can metabolise a systematically introduced, non-toxic prodrug into a toxic metabolite. The feasibility of this strategy (clostridial-directed enzyme prodrug therapy, CDEPT) has been demonstrated by cloning the Escherichia coli B gene encoding nitroreductase (an enzyme which converts the prodrug CB1954 to a highly toxic bifunctional alkylating agent) into a clostridial expression vector and introducing the resultant plasmid into Clostridium beijerinckii (formerly C. acetobutylicum ) NCIMB 8052. The gene was efficiently expressed, with recombinant nitroreductase representing 8% of the cell soluble protein. Following the intravenous injection of the recombinant spores into mice, tumour lysates have been shown, by Western blots, to contain the E. coli -derived enzyme.  相似文献   

5.
Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD) along with an optical reporter gene (luciferase). Following intratumoral injection of the vector into orthotopic 9 L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC) gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging for assessment of gene expression and therapeutic efficacy.  相似文献   

6.
Our group is developing a novel technology, enzyme-mediated cancer imaging and therapy (EMCIT), that aims to entrap radioiodinated compounds within solid tumors for noninvasive tumor detection and therapy. In this approach, a water-soluble, radioiodinated prodrug is hydrolyzed in vivo to a highly water-insoluble compound by an enzyme overexpressed extracellularly by tumor cells. We have synthesized and characterized the water-soluble prodrug, 2-(2'-phosphoryloxyphenyl)-6-[(125)I]iodo-4-(3H)-quinazolinone [(125)I]5, which is readily hydrolyzed by alkaline phosphatase, an enzyme expressed by many tumor cell lines, to a water-insoluble drug, 2-(2'-hydroxyphenyl)-6-[(125)I]iodo-4-(3H)-quinazolinone [(125)I]1. In the course of our study, we discovered that ammonium 2-(2'-phosphoryloxyphenyl)-6-tributylstannyl-4-(3H)-quinazolinone, an intermediate in the radioiodination of the prodrug, exists as two isomers (3 and 4) whose radioiodination leads, respectively, to [(125)I]6 and [(125)I]5. These prodrugs have different in vitro and in vivo biologic activities. Compound 6 is not hydrolyzed by alkaline phosphatase (ALP), whereas 5 is highly soluble (mg/mL) in aqueous solution and is rapidly dephosphorylated in the presence of ALP to 1, a water-insoluble molecule (ng/mL). Mouse biodistribution studies indicate that [(125)I]6 has high uptake in kidney and liver and [(125)I]5 has very low uptake in all normal organs. Compounds 3 and 6 are converted, respectively, to 4 and 5 after incubation in DMSO. The stability of 5 in human serum is high. The minimum ALP concentration needed to hydrolyze 5 is much greater than the ALP level in the blood of patients with cancer, and the latter should not affect the pharmacokinetics of the compound. Incubation of 5 with viable human and mouse tumor-cell lines--but not with normal human cells and mouse tissues--leads to its hydrolysis and the formation of large crystals of 1. We expect that 5 will also be hydrolyzed in vivo by tumor cells that express phosphatase activity extracellularly and anticipate the specific precipitation of radioiodinated 1 within tumor cell clusters. This should lead to high tumor-to-normal-tissue ratios and enable imaging (SPECT/PET) and radionuclide therapy of solid tumors.  相似文献   

7.
Mahan SD  Ireton GC  Stoddard BL  Black ME 《Biochemistry》2004,43(28):8957-8964
Suicide gene therapy of cancer is a method whereby cancerous tumors can be selectively eradicated while sparing damage to normal tissue. This is accomplished by delivering a gene, encoding an enzyme capable of specifically converting a nontoxic prodrug into a cytotoxin, to cancer cells followed by prodrug administration. The Escherichia coli gene, codA, encodes cytosine deaminase and is introduced into cancer cells followed by administration of the prodrug 5-fluorocytosine (5-FC). Cytosine deaminase converts 5-FC into cytotoxic 5-fluorouracil, which leads to tumor-cell eradication. One limitation of this enzyme/prodrug combination is that 5-FC is a poor substrate for bacterial cytosine deaminase. The crystal structure of bacterial cytosine deaminase (bCD) reveals that a loop structure in the active site pocket of wild-type bCD comprising residues 310-320 undergoes a conformational change upon cytosine binding, making several contacts to the pyrimidine ring. Alanine-scanning mutagenesis was used to investigate the structure-function relationship of amino acid residues within this region, especially with regard to substrate specificity. Using an E. coli genetic complementation system, seven active mutants were identified (F310A, G311A, H312A, D314A, V315A, F316A, and P318A). Further characterization of these mutants reveals that mutant F316A is 14-fold more efficient than the wild-type at deaminating cytosine to uracil. The mutant D314A enzyme demonstrates a dramatic decrease in cytosine activity (17-fold) as well as a slight increase in activity toward 5-FC (2-fold), indicating that mutant D314A prefers the prodrug over cytosine by almost 20-fold, suggesting that it may be a superior suicide gene.  相似文献   

8.

Background and Purpose

The targeting of therapeutics is a promising approach for the development of new cancer treatments that seek to reduce the devastating side effects caused by the systemic administration of current drugs. This study evaluates a fusion protein developed as an enzyme prodrug therapy targeted to the tumor vasculature. Cytotoxicity would be localized to the site of the tumor using a protein fusion of purine nucleoside phosphorylase (PNP) and annexin V. Annexin V acts as the tumor-targeting component of the fusion protein as it has been shown to bind to phosphatidylserine expressed externally on cancer cells and the endothelial cells of the tumor vasculature, but not normal vascular endothelial cells. The enzymatic component of the fusion, PNP, converts the FDA-approved cancer therapeutic, fludarabine, into a more cytotoxic form. The purpose of this study is to determine if this system has a good potential as a targeted therapy for breast cancer.

Methods

A fusion of E. coli purine nucleoside phosphorylase and human annexin V was produced in E. coli and purified. Using human breast cancer cell lines MCF-7 and MDA-MB-231 and non-confluent human endothelial cells grown in vitro, the binding strength of the fusion protein and the cytotoxicity of the enzyme prodrug system were determined. Endothelial cells that are not confluent expose phosphatidylserine and therefore mimic the tumor vasculature.

Results

The purified recombinant fusion protein had good enzymatic activity and strong binding to the three cell lines. There was significant cell killing (p<0.001) by the enzyme prodrug treatment for all three cell lines, with greater than 80% cytotoxicity obtained after 6 days of treatment.

Conclusion

These results suggest that this treatment could be useful as a targeted therapy for breast cancer.  相似文献   

9.
Precise dose delivery to malignant tissue in radiotherapy is of paramount importance for treatment efficacy while minimizing morbidity of surrounding normal tissues. Current conventional imaging techniques, such as magnetic resonance imaging (MRI) and computerized tomography (CT), are used to define the three-dimensional shape and volume of the tumor for radiation therapy. In many cases, these radiographic imaging (RI) techniques are ambiguous or provide limited information with regard to tumor margins and histopathology. Molecular imaging (MI) modalities, such as positron emission tomography (PET) and single photon-emission computed-tomography (SPECT) that can characterize tumor tissue, are rapidly becoming routine in radiation therapy. However, their inherent low spatial resolution impedes tumor delineation for the purposes of radiation treatment planning. This review will focus on applications of nanotechnology to synergize imaging modalities in order to accurately highlight, as well as subsequently target, tumor cells. Furthermore, using such nano-agents for imaging, simultaneous coupling of novel therapeutics including radiosensitizers can be delivered specifically to the tumor to maximize tumor cell killing while sparing normal tissue.  相似文献   

10.
Gene therapy of cancer is a novel approach with the potential to selectively eradicate tumour cells, whilst sparing normal tissue from damage. In particular, gene-directed enzyme prodrug therapy (GDEPT) is based on the delivery of a gene that encodes an enzyme which is non-toxic per se, but is able to convert a prodrug into a potent cytotoxin. Several GDEPT systems have been investigated so far, demonstrating effectiveness in both tissue culture and animal models. Based on these encouraging results, phase I/II clinical trials have been performed and are still ongoing. The aim of this review is to summarise the progress made in the design and application of GDEPT strategies. The most widely used enzyme/prodrug combinations already in clinical trials (e.g., herpes simplex 1 virus thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine), as well as novel approaches (carboxypeptidase G2/CMDA, horseradish peroxidase/indole-3-acetic acid) are described, with a particular attention to translational research and early clinical results.  相似文献   

11.
Antibodies are highly specific recognition molecules which are increasingly being applied to target therapy in patients. One type of developmental antibody-based therapy is antibody directed enzyme prodrug therapy (ADEPT) for the treatment of cancer. In ADEPT, an antibody specific to a tumor marker protein delivers a drug-activating enzyme to the cancer. Subsequent intravenous administration of an inactive prodrug results in drug activation and cytotoxicity only within the locale of the tumor. Pilot clinical trials with chemical conjugates of the prodrug activating enzyme carboxypeptidase G2 (CPG2) chemically conjugated with an antibody to and carcinoembryonic antigen (CEA), have shown that CPG2-mediated ADEPT is effective but limited by formation of human antibodies to CPG2 (HACA). We have developed a recombinant fusion protein (termed MFE-CP) of CPG2 with an anti-CEA single chain Fv antibody fragment and we have developed methods to address the immunogenicity of this therapeutic. A HACA-reactive discontinuous epitope on MFE-CP was identified using the crystal structure of CPG2, filamentous phage technology and surface enhanced laser desorption/ionization affinity mass spectrometry. This information was used to create a functional mutant of MFE-CP with a significant reduction (range 19.2 to 62.5%, median 38.5%) in reactivity with the sera of 11 patients with post-therapy HACA. The techniques described here are valuable tools for identifying and adapting undesirable immunogenic sites on protein therapeutics.  相似文献   

12.
Gene therapy is defined as a technology aimed at modifying the genetic component of cells for therapeutic benefit. ‘Suicide genes’ can be introduced into cancer cells to make them more sensitive to chemotherapeutics or toxins. Chemotherapeutic suicide gene therapy approaches are known as gene-directed enzyme prodrug therapy or gene-prodrug activation therapy. Other approaches include replacement gene therapy, antisense strategies and induction of resistance to normal cells. All gene therapy strategies share a common component, which is the need for a selective delivery vehicle or vector with tumor-targeting capabilities. This need has led to the in-depth investigation of viruses as new vectors for gene therapy.  相似文献   

13.
Bacterial nitroreductases (NTRs) have been widely utilized in the development of novel antibiotics, degradation of pollutants, and gene-directed enzyme prodrug therapy (GDEPT) of cancer that reached clinical trials. In case of GDEPT, since NTR is not naturally present in mammalian cells, the prodrug is activated selectively in NTR-transformed cancer cells, allowing high efficiency treatment of tumors. Currently, no bioluminescent probes exist for sensitive, non-invasive imaging of NTR expression. We therefore developed a "NTR caged luciferin" (NCL) probe that is selectively reduced by NTR, producing light proportional to the NTR activity. Here we report successful application of this probe for imaging of NTR in vitro, in bacteria and cancer cells, as well as in vivo in mouse models of bacterial infection and NTR-expressing tumor xenografts. This novel tool should significantly accelerate the development of cancer therapy approaches based on GDEPT and other fields where NTR expression is important.  相似文献   

14.
MFECP1 is a mannosylated antibody-enzyme fusion protein used in antibody-directed enzyme prodrug therapy (ADEPT). The antibody selectively targets tumor cells and the targeted enzyme converts a prodrug into a toxic drug. MFECP1 is obtained from expression in the yeast Pichia pastoris and produced to clinical grade. The P. pastoris-derived mannosylation of the fusion protein aids rapid normal tissue clearance required for successful ADEPT. The work presented provides evidence that MFECP1 is cleared by the endocytic and phagocytic mannose receptor (MR), which is known to bind to mannose-terminating glycans. MR-transfected fibroblast cells internalize MFECP1 as revealed by flow cytometry and confocal microscopy. Immunofluorescence microscopy shows that in vivo clearance in mice occurs predominantly by MR on liver sinusoidal endothelial cells, although MR is also expressed on adjacent Kupffer cells. In the spleen, MFECP1 is taken up by MR-expressing macrophages residing in the red pulp and not by dendritic cells which are found in the marginal zone and white pulp. Clearance can be inhibited in vivo by the MR inhibitor mannan as shown by increased enzyme activities in blood. The work improves understanding of interactions of MFECP1 with normal tissue, shows that glycosylation can be exploited in the design of recombinant anticancer therapeutics and opens the ways for optimizing pharmacokinetics of mannosylated recombinant therapeutics.  相似文献   

15.
The F(ab’)2 fragment of the antitumor monoclonal antibody, A5B7, was covalently linked to the bacterial enzyme carboxypeptidase G2 (CPG2). The resulting conjugate was used in combination with a prodrug of a benzoic acid mustard alkylating agent to treat human colon tumor xenografts in a two-step targeting strategy, antibody-directed enzyme produrug therapy (ADEPT). The prodrug, 4-[(2-chloroethyl) (2-mesyloxyethyl) amino]-benzoyl-l-glutamic acid is rapidly converted by CPG2 to a drug that is at least 15x more toxic in vitro against LS174T colorectal tumor cells than the prodrug. Optimal tumor/ blood ratios of the A5B7-CPG2 were achieved 72 h after administration of the conjugate to athymic mice bearing established LS174T tumor xenografts. Significant antitumor activity was seen in LS174T tumor-bearing mice treated with the conjugate followed 3 d later by the prodrug. In contrast, prodrug, conjugate, or active drug alone did not result in any antitumor activity in this tumor model. These studies demonstrate the advantage of a two-step ADEPT system for the treatment of colorectal cancer.  相似文献   

16.
Antibody-directed enzyme prodrug therapy (ADEPT) utilizing β-glucuronidase is a promising method to enhance the therapeutic index of cancer chemotherapy. In this approach, an immunoenzyme (antibody-β-glucuronidase fusion protein) is employed to selectively activate anticancer glucuronide prodrugs in the tumor microenvironment. A major roadblock to the clinical translation of this therapeutic strategy, however, is the low enzymatic activity and strong immunogenicity of the current generation of immunoenzymes. To overcome this problem, we fused a humanized single-chain antibody (scFv) of mAb CC49 to S2, a human β-glucuronidase (hβG) variant that displays enhanced catalytic activity for prodrug hydrolysis. Here, we show that hcc49-S2 displayed 100-fold greater binding avidity than hcc49 scFv, possessed greater enzymatic activity than wild-type hβG, and more effectively killed antigen-positive cancer cells exposed to an anticancer glucuronide prodrug as compared to an analogous hβG immunoenzyme. Treatment of tumor-bearing mice with hcc49-S2 followed by prodrug significantly delayed tumor growth as compared to hcc49-hβG. Our study shows that hcc49-S2 is a promising targeted enzyme for cancer treatment and demonstrates that enhancement of human enzyme catalytic activity is a powerful approach to improve immunoenzyme efficacy.  相似文献   

17.
BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.  相似文献   

18.
Cathepsin B plays key roles in tumor progression with its overexpression being associated with invasive and metastatic phenotypes and is a primary target of protease activated antibody-directed prodrug therapy. It therefore represents a potential therapeutic and diagnostic target and effort has been made to develop fluorescent probes to report on Cathepsin B activity in cells and animal models of cancer. We have designed, synthesized, and thoroughly evaluated four novel “turn on” probes that employ a lysosomotropic dansylcadaverine dye to report on Cathepsin B activity. Enzyme activity assays using a recombinant human enzyme and cancer cell lysates coupled with confocal microscopy experiments demonstrated that one of the probes, derivatized with the self-immolative prodrug linker p-aminobenzyl alcohol, can selectively report on Cathepsin B in biological samples including live cells.  相似文献   

19.
We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of (10)B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na(2)(10)B(10)H(10)), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号