首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Cancer stem cells are a chemotherapy-resistant population capable of self-renewal and of regenerating the bulk tumor, thereby causing relapse and patient death. Ewing''s sarcoma, the second most common form of bone tumor in adolescents and young adults, follows a clinical pattern consistent with the Cancer Stem Cell model – remission is easily achieved, even for patients with metastatic disease, but relapse remains frequent and is usually fatal.

Methodology/Principal Findings

We have isolated a subpopulation of Ewing''s sarcoma cells, from both human cell lines and human xenografts grown in immune deficient mice, which express high aldehyde dehydrogenase (ALDHhigh) activity and are enriched for clonogenicity, sphere-formation, and tumor initiation. The ALDHhigh cells are resistant to chemotherapy in vitro, but this can be overcome by the ATP binding cassette transport protein inhibitor, verapamil. Importantly, these cells are not resistant to YK-4-279, a small molecule inhibitor of EWS-FLI1 that is selectively toxic to Ewing''s sarcoma cells both in vitro and in vivo.

Conclusions/Significance

Ewing''s sarcoma contains an ALDHhigh stem-like population of chemotherapy-resistant cells that retain sensitivity to EWS-FLI1 inhibition. Inhibiting the EWS-FLI1 oncoprotein may prove to be an effective means of improving patient outcomes by targeting Ewing''s sarcoma stem cells that survive standard chemotherapy.  相似文献   

3.
4.
5.
6.

Background

Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, the complexity of body fluids often hampers biomarker discovery. An attractive alternative approach is the isolation of small vesicles, i.e. exosomes, ∼100 nm, which contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific biomarker discovery.

Materials and Methods

Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. After tryptic digestion, proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode. Accurate Mass and Time (AMT) tag approach was employed for peptide identification and quantitation. Candidate biomarkers were validated by Western blotting and Immunohistochemistry.

Results

Proteomic characterization resulted in the identification of 248, 233, 169, and 216 proteins by at least 2 peptides in exosomes from PNT2C2, RWPE-1, PC346C, and VCaP, respectively. Statistical analyses revealed 52 proteins differently abundant between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes.

Conclusions

Identification of exosomal proteins using high performance LC-FTMS resulted in the discovery of PDCD6IP, FASN, XPO1 and ENO1 as new candidate biomarkers for prostate cancer.  相似文献   

7.
8.
Prostate cancer is a heterogeneous group of diseases and there is a need for more efficient and targeted methods of treatment. In this study, the potential of gene expression data and RNA interference technique were combined to advance future personalized prostate cancer therapeutics. To distinguish the most promising in vivo prevalidated prostate cancer drug targets, a bioinformatic analysis was carried out using genome-wide gene expression data from 9873 human tissue samples. In total, 295 genes were selected for further functional studies in cultured prostate cancer cells due to their high mRNA expression in prostate, prostate cancer or in metastatic prostate cancer samples. Second, RNAi based cell viability assay was performed in VCaP and LNCaP prostate cancer cells. Based on the siRNA results, gene expression patterns in human tissues and novelty, endoplasmic reticulum function associated targets AIM1, ERGIC1 and TMED3, as well as mitosis regulating TPX2 were selected for further validation. AIM1, ERGIC1, and TPX2 were shown to be highly expressed especially in prostate cancer tissues, and high mRNA expression of ERGIC1 and TMED3 associated with AR and ERG oncogene expression. ERGIC1 silencing specifically regulated the proliferation of ERG oncogene positive prostate cancer cells and inhibited ERG mRNA expression in these cells, indicating that it is a potent drug target in ERG positive subgroup of prostate cancers. TPX2 expression associated with PSA failure and TPX2 silencing reduced PSA expression, indicating that TPX2 regulates androgen receptor mediated signaling. In conclusion, the combinatorial usage of microarray and RNAi techniques yielded in a large number of potential novel biomarkers and therapeutic targets, for future development of targeted and personalized approaches for prostate cancer management.  相似文献   

9.

Introduction

The use of the 5-alpha reductase inhibitors (5-ARIs) finasteride and dutasteride for prostate cancer prevention is still under debate. The FDA recently concluded that the increased prevalence of high-grade tumors among 5-ARI-treated patients must not be neglected, and they decided to disallow the use of 5-ARIs for prostate cancer prevention. This study was conducted to verify the effects of finasteride on prostate cell migration and invasion and the related enzymes/proteins in normal human and tumoral prostatic cell lines.

Materials and Methods

RWPE-1, LNCaP, PC3 and DU145 cells were cultivated to 60% confluence and exposed for different periods to either 10 µM or 50 µM finasteride that was diluted in culture medium. The conditioned media were collected and concentrated, and MMP2 and MMP9 activities and TIMP-1 and TIMP-2 protein expression were determined. Cell viability, migration and invasion were analyzed, and the remaining cell extracts were submitted to androgen receptor (AR) detection by western blotting techniques. Experiments were carried out in triplicate.

Results

Cell viability was not significantly affected by finasteride exposure. Finasteride significantly downregulated MMP2 and MMP9 activities in RWPE-1 and PC3 cells and MMP2 in DU145 cells. TIMP-2 expression in RWPE-1 cells was upregulated after exposure. The cell invasion of all four tested cell lines was inhibited by exposure to 50 µM of finasteride, and migration inhibition only occurred for RWPE-1 and LNCaP cells. AR was expressed by LNCaP, RWPE-1 and PC3 cells.

Conclusions

Although the debate on the higher incidence of high-grade prostate cancer among 5-ARI-treated patients remains, our findings indicate that finasteride may attenuate tumor aggressiveness and invasion, which could vary depending on the androgen responsiveness of a patient’s prostate cells.  相似文献   

10.
Chiu SC  Chen SP  Huang SY  Wang MJ  Lin SZ  Harn HJ  Pang CY 《PloS one》2012,7(3):e33742

Background

N-butylidenephthalide (BP) exhibits antitumor effect in a variety of cancer cell lines. The objective of this study was to obtain additional insights into the mechanisms involved in BP induced cell death in human prostate cancer cells.

Methods/Principal Findings

Two human prostate cancer cell lines, PC-3 and LNCaP, were treated with BP, and subsequently evaluated for their viability and cell cycle profiles. BP caused cell cycle arrest and cell death in both cell lines. The G0/G1 phase arrest was correlated with increase levels of CDK inhibitors (p16, p21 and p27) and decrease of the checkpoint proteins. To determine the mechanisms of BP-induced growth arrest and cell death in prostate cancer cell lines, we performed a microarray study to identify alterations in gene expression induced by BP in the LNCaP cells. Several BP-induced genes, including the GADD153/CHOP, an endoplasmic reticulum stress (ER stress)-regulated gene, were identified. BP-induced ER stress was evidenced by increased expression of the downstream molecules GRP78/BiP, IRE1-α and GADD153/CHOP in both cell lines. Blockage of IRE1-α or GADD153/CHOP expression by siRNA significantly reduced BP-induced cell death in LNCaP cells. Furthermore, blockage of JNK1/2 signaling by JNK siRNA resulted in decreased expression of IRE1-α and GADD153/CHOP genes, implicating that BP-induced ER stress may be elicited via JNK1/2 signaling in prostate cancer cells. BP also suppressed LNCaP xenograft tumor growth in NOD-SCID mice. It caused 68% reduction in tumor volume after 18 days of treatment.

Conclusions

Our results suggest that BP can cause G0/G1 phase arrest in prostate cancer cells and its cytotoxicity is mediated by ER stress induction. Thus, BP may serve as an anticancer agent by inducing ER stress in prostate cancer.  相似文献   

11.

Background

Prostate cancer is the most common cancer among elderly men in the US, and immunotherapy has been shown to be a promising strategy to treat patients with metastatic castration-resistant prostate cancer. Efforts to identify novel prostate specific tumor antigens will facilitate the development of effective cancer vaccines against prostate cancer. Prostate-specific G-protein coupled receptor (PSGR) is a novel antigen that has been shown to be specifically over-expressed in human prostate cancer tissues. In this study, we describe the identification of PSGR-derived peptide epitopes recognized by CD8+ T cells in an HLA-A2 dependent manner.

Methodology/Principal Findings

Twenty-one PSGR-derived peptides were predicted by an immuno-informatics approach based on the HLA-A2 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from either HLA-A2+ healthy donors or HLA-A2+ prostate cancer patients. The recognition of HLA-A2 positive and PSGR expressing LNCaP cells was also tested. Among the 21 PSGR-derived peptides, three peptides, PSGR3, PSGR4 and PSGR14 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and prostate cancer patients. Importantly, these peptide-specific T cells recognized and killed LNCaP prostate cancer cells in an HLA class I-restricted manner.

Conclusions/Significance

We have identified three novel HLA-A2-restricted PSGR-derived peptides recognized by CD8+ T cells, which, in turn, recognize HLA-A2+ and PSGR+ tumor cells. The PSGR-derived peptides identified may be used as diagnostic markers as well as immune targets for development of anticancer vaccines.  相似文献   

12.

Objective

The objective of this study was to investigate nanobubbles carrying androgen receptor (AR) siRNA and their in vitro and in vivo anti-tumor effects, when combined with ultrasonic irradiation, on androgen-independent prostate cancer (AIPC).

Materials and Methods

Nanobubbles carrying AR siRNA were prepared using poly-L-lysine and electrostatic adsorption methods. Using C4-2 cell activity as a testing index, the optimal irradiation parameters (including the nanobubble number/cell number ratio, mechanical index [MI], and irradiation time) were determined and used for transfection of three human prostate cancer cell lines (C4-2, LNCaP, and PC-3 cells). The AR expression levels were investigated with RT-PCR and Western blot analysis. Additionally, the effects of the nanobubbles and control microbubbles named SonoVue were assessed via imaging in a C4-2 xenograft model. Finally, the growth and AR expression of seven groups of tumor tissues were assessed using the C4-2 xenograft mouse model.

Results

The nanobubbles had an average diameter of 609.5±15.6 nm and could effectively bind to AR siRNA. Under the optimized conditions of a nanobubble number/cell number ratio of 100∶1, an MI of 1.2, and an irradiation time of 2 min, the highest transfection rates in C4-2, LNCaP, and PC-3 cells were 67.4%, 74.0%, and 63.96%, respectively. In the C4-2 and LNCaP cells, treatment with these binding nanobubbles plus ultrasonic irradiation significantly inhibited cell growth and resulted in the suppression of AR mRNA and protein expression. Additionally, contrast-enhanced ultrasound showed that the nanobubbles achieved stronger signals than the SonoVue control in the central hypovascular area of the tumors. Finally, the anti-tumor effect of these nanobubbles plus ultrasonic irradiation was most significant in the xenograft tumor model compared with the other groups.

Conclusion

Nanobubbles carrying AR siRNA could be potentially used as gene vectors in combination with ultrasonic irradiation for the treatment of AIPC.  相似文献   

13.

Background

Sphingosine kinase-1 (SphK1) is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival.

Methodology/Principal Findings

Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT) to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE)-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway—by negatively impacting SphK1 activity—could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity.

Conclusions/Significance

We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a compensatory mechanism allowing prostate cancer cells to survive in androgen-depleted environment, giving support to its inhibition as a potential therapeutic strategy to delay/prevent the transition to androgen-independent prostate cancer.  相似文献   

14.

Background

Currently available methods for diagnosis and staging of prostate cancer lack the sensitivity to distinguish between patients with indolent prostate cancer and those requiring radical treatment. Alterations in key adherens (AJ) and tight junction (TJ) components have been hailed as potential biomarkers for prostate cancer progression but the majority of research has been carried out on individual molecules.

Objective

To elucidate a panel of biomarkers that may help distinguish dormant prostate cancer from aggressive metastatic disease.

Methods

We analysed the expression of 7 well known AJ and TJ components in cell lines derived from normal prostate epithelial tissue (PNT2), non-invasive (CAHPV-10) and invasive prostate cancer (LNCaP, DU145, PC-3) using gene expression, western blotting and immunofluorescence techniques.

Results

Claudin 7, α –catenin and β-catenin protein expression were not significantly different between CAHPV-10 cells and PNT2 cells. However, in PC-3 cells, protein levels for claudin 7, α –catenin were significantly down regulated (−1.5 fold, p = <.001) or undetectable respectively. Immunofluoresence showed β-catenin localisation in PC-3 cells to be cytoplasmic as opposed to membraneous.

Conclusion

These results suggest aberrant Claudin 7, α – and β-catenin expression and/or localisation patterns may be putative markers for distinguishing localised prostate cancer from aggressive metastatic disease when used collectively.  相似文献   

15.
16.
17.
18.

Background

In an effort to achieve better cancer therapies, we elucidated the combination cancer therapy of STI571 (an inhibitor of Bcr-Abl and clinically used for chronic myelogenous leukemia) and TNF-related apoptosis-inducing ligand (TRAIL, a developing antitumor agent) in leukemia, colon, and prostate cancer cells.

Methods

Colon cancer (HCT116, SW480), prostate cancer (PC3, LNCaP) and leukemia (K562) cells were treated with STI571 and TRAIL. Cell viability was determined by MTT assay and sub-G1 appearance. Protein expression and kinase phosphorylation were determined by Western blotting. c-Abl and p73 activities were inhibited by target-specific small interfering (si)RNA. In vitro kinase assay of c-Abl was conducted using CRK as a substrate.

Results

We found that STI571 exerts opposite effects on the antitumor activity of TRAIL. It enhanced cytotoxicity in TRAIL-treated K562 leukemia cells and reduced TRAIL-induced apoptosis in HCT116 and SW480 colon cancer cells, while having no effect on PC3 and LNCaP cells. In colon and prostate cancer cells, TRAIL caused c-Abl cleavage to the active form via a caspase pathway. Interestingly, JNK and p38 MAPK inhibitors effectively blocked TRAIL-induced toxicity in the colon, but not in prostate cancer cells. Next, we found that STI571 could attenuate TRAIL-induced c-Abl, JNK and p38 activation in HCT116 cells. In addition, siRNA targeting knockdown of c-Abl and p73 also reduced TRAIL-induced cytotoxicity, rendering HCT116 cells less responsive to stress kinase activation, and masking the cytoprotective effect of STI571.

Conclusions

All together we demonstrate a novel mediator role of p73 in activating the stress kinases p38 and JNK in the classical apoptotic pathway of TRAIL. TRAIL via caspase-dependent action can sequentially activate c-Abl, p73, and stress kinases, which contribute to apoptosis in colon cancer cells. Through the inhibition of c-Abl-mediated apoptotic p73 signaling, STI571 reduces the antitumor activity of TRAIL in colon cancer cells. Our results raise additional concerns when developing combination cancer therapy with TRAIL and STI571 in the future.  相似文献   

19.
20.

Background

In prostate cancer the secreted form of clusterin (sCLU) has been described as an anti-apoptotic protein whose expression is increased after therapeutic intervention, whereas, the nuclear protein form nCLU was reported to have pro-apoptotic properties.

Methodology

In order to provide new therapeutic approaches targeting CLU, we developed a strategy based on exon skipping by using a lentiviral construct to preferentially induce the nuclear spliced form of the protein. The molecular construct was transduced in LNCaP cells for testing the modulation of sensitivity of the transduced cells to pro-apoptotic stress.

Results and Conclusions

We showed an increase of nCLU/sCLU expression ratio in the prostate cancer cell line “LNCaP” after lentiviral vector-U7 nCLU transduction. Moreover, we showed a significant inhibition of cell proliferation in nCLU-U7 LNCaP cells after treatment with cisplatin and after exposure to ionizing radiation compared to control cells. Finally, we showed that nCLU-U7 LNCaP cells exposure to UV-C significantly reduced an increase of cell death compared to control. Finally, we showed that modulating nCLU expression had profound impact on Ku70/Bax interaction as well as Rad17 expression which could be a key mechanism in sensitizing cells to cell death. In conclusion, this is the first report showing that increasing of nCLU/sCLU expression ratio by using an “on demand alternative splicing” strategy successfully increased sensitivity to radiotherapy and chemotherapy of prostate cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号