首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1 entry inhibitors in the side pocket.   总被引:8,自引:0,他引:8  
J G Sodroski 《Cell》1999,99(3):243-246
  相似文献   

2.
The kinetic constants for the interactions between HIV-1 protease and a selection of inhibitors were determined at different pH-values using a biosensor based interaction assay. Since this technique does not involve a substrate, it was possible to determine the pH-dependencies of the association and dissociation rates of an inhibitor, without the complication of a pH-dependent enzyme-substrate/product equilibrium. The importance of these interactions was evaluated by correlating the free energy changes upon association and dissociation of inhibitors with the predicted change in electrostatic properties of the interacting groups as a result of altered pH. It was found that the kinetic parameters varied with pH in a unique manner for all inhibitors, demonstrating that the kinetic features were associated with the specific structure of each inhibitor. Association and dissociation had different pH-profiles, indicating that the two processes proceeded by different pathways/mechanisms. The energy barrier for dissociation of the enzyme-indinavir complex increased with pH from 4.1 to 7.4, while it was generally reduced for the other inhibitors as the pH was increased from 5.1 to 7.4. The pH-dependent interactions involved in the recognition/binding of inhibitors and in the stabilization of the complex were identified by analysing three-dimensional structures of enzyme-inhibitor complexes. The interaction between the pyridine nitrogen of indinavir with Arg-8 was hypothesized to be responsible for the unique pH-dependency of indinavir. The analysis revealed features of interactions that are significant for understanding enzyme function and for optimization of new drug leads. It also highlighted the importance of environmental conditions on interactions.  相似文献   

3.
The non-specific binding of a drug to plasma proteins is an important determinant of its biological efficacy since it modulates the availability of the drug to its intended target. In the case of HIV-1 protease inhibitors, binding to human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) appears to be an important modulator of drug bioavailability. From a thermodynamic point of view, the issue of drug availability to the desired target can be formulated as a multiple equilibrium problem in which a ligand is able to bind to different proteins or other macromolecules with different binding affinities. Previously, we have measured the binding thermodynamics of HIV-1 protease inhibitors to their target. In this article, the binding energetics of four inhibitors currently in clinical use (saquinavir, indinavir, ritonavir and nelfinavir) and a second-generation inhibitor (KNI-764) to human HSA and AAG has been studied by isothermal titration calorimetry. All inhibitors exhibited a significant affinity for AAG (K(a) approximately 0.5-10 x 10(5) M(-1)) and a relatively low affinity for HSA (K(a) approximately 5-15 x 10(3) M(-1)). It is shown that under conditions that simulate in vivo concentrations of serum proteins, the inhibitor concentrations required to achieve 95% protease inhibition can be up to 10 times higher than those required in the absence of serum proteins. The effect is compounded in patients infected with drug resistant HIV-1 strains that exhibit a lower affinity for protease inhibitors. In these cases the required inhibitor concentrations can be up to 2000 times higher and beyond the solubility limits of the inhibitors.  相似文献   

4.
A significant obstacle to the efficacy of drugs directed against viral targets is the presence of amino acid polymorphisms in the targeted molecules. Amino acid polymorphisms may occur naturally due to the existence of variations within and between viral strains or as the result of mutations associated with drug resistance. An ideal drug will be one that is extremely effective against a primary target and maintains its effectiveness against the most important variations of the target molecule. A drug that simultaneously inhibits different variants of the target will lead to a faster suppression of the virus, retard the appearance of drug-resistant mutants and provide more efficacious and, in the long range, more affordable therapies. Drug molecules with the ability to inhibit several variants of a target with high affinity have been termed adaptive drugs (Nat. Biotechnol. 20 (2002) 15; Biochemistry 42 (2003) 8459; J. Cell. Biochem. S37 (2001) 82). Current drug design paradigms are predicated upon the lock-and-key hypothesis, which emphasizes shape complementarity as a way to attain specificity and improved binding affinity. Shape complementarity is accomplished by the introduction of conformational constraints in the drug molecule. While highly constrained molecules do well against a unique target, they lack the ability to adapt to target variations like those originating from naturally occurring polymorphisms or drug-resistant mutations. Targeting an array of closely related targets rather than a single one while still maintaining selectivity, requires a different approach. A plausible strategy for designing high affinity adaptive inhibitors is to engineer their most critical interactions (for affinity and specificity) with conserved regions of the target while allowing for adaptability through the introduction of flexible asymmetric functionalities in places facing variable regions of the target. The fundamental thermodynamics and structural principles associated with this approach are discussed in this chapter.  相似文献   

5.
Dimerization inhibitors of HIV-1 protease   总被引:2,自引:0,他引:2  
By targeting the highly conserved antiparallel beta-sheet formed by the interdigitation of the N- and C-terminal strands of each monomer, dimerization inhibitors of HIV-1 protease may be useful to overcome the drug resistance observed with current active-site directed antiproteases. Sequestration of the monomer by the inhibitor (or disruption of the dimer interface) prevents the correct assembly of the inactive monomers to active enzyme. Strategies for the design of drugs targeting the dimer interface are described. Various dimerization inhibitors are reported including N- and C-terminal mimetics, lipopeptides and cross-linked interface peptides.  相似文献   

6.
The aspartyl dyad of free HIV-1 protease has apparent pK(a)s of approximately 3 and approximately 6, but recent NMR studies indicate that the aspartyl dyad is fixed in the doubly protonated form over a wide pH range when cyclic urea inhibitors are bound, and in the monoprotonated form when the inhibitor KNI-272 is bound. We present computations and measurements related to these changes in protonation and to the thermodynamic linkage between protonation and inhibition. The Poisson-Boltzmann model of electrostatics is used to compute the apparent pK(a)s of the aspartyl dyad in the free enzyme and in complexes with four different inhibitors. The calculations are done with two parameter sets. One assigns epsilon = 4 to the solute interior and uses a detailed model of ionization; the other uses epsilon = 20 for the solute interior and a simplified representation of ionization. For the free enzyme, both parameter sets agree well with previously measured apparent pK(a)s of approximately 3 and approximately 6. However, the calculations with an internal dielectric constant of 4 reproduce the large pKa shifts upon binding of inhibitors, but the calculations with an internal dielectric constant of 20 do not. This observation has implications for the accurate calculation of pK(a)s in complex protein environments. Because binding of a cyclic urea inhibitor shifts the pK(a)s of the aspartyl dyad, changing the pH is expected to change its apparent binding affinity. However, we find experimentally that the affinity is independent of pH from 5.5 to 7.0. Possible explanations for this discrepancy are discussed.  相似文献   

7.
Existing experimental as well as computational screening methods select potential ligands or drug candidates on the basis of binding affinity. Since the binding affinity is a function of the enthalpy (DeltaH) and entropy (DeltaS) changes, it is apparent that improved binding can be achieved in different ways: by optimizing DeltaH, DeltaS, or a combination of both. However, the behavior of enthalpically or entropically optimized inhibitors is fundamentally different, including their response to mutations that may elicit drug resistance. In the design of HIV-1 protease inhibitors, high binding affinity has usually been achieved by preshaping lead compounds to the geometry of the binding site and by incorporating a high degree of hydrophobicity. The thermodynamic consequence of that approach is that the binding affinity of the resulting inhibitors becomes entropically favorable but enthalpically unfavorable. Specifically, the resulting high binding affinity is due to an increased solvation entropy (hydrophobic effect) combined with a reduced loss of conformational entropy of the inhibitor upon binding (structural rigidity). Here we report that tripeptide inhibitors derived from the transframe region of Gag-Pol (Glu-Asp-Leu and Glu-Asp-Phe) bind to the HIV-1 protease with a favorable enthalpy change. This behavior is qualitatively different from that of known inhibitors and points to new strategies for inhibitor design. Since the binding affinities of enthalpically favorable and enthalpically unfavorable inhibitors have opposite temperature dependence, it is possible to design fast screening protocols that simultaneously select inhibitors on the basis of affinity and enthalpy.  相似文献   

8.
An extensive structural manifold of short hydrogen bond-mediated, active site-directed, serine protease inhibition motifs is revealed in a set of over 300 crystal structures involving a large suite of small molecule inhibitors (2-(2-phenol)-indoles and 2-(2-phenol)-benzimidazoles) determined over a wide range of pH (3.5-11.4). The active site hydrogen-bonding mode was found to vary markedly with pH, with the steric and electronic properties of the inhibitor, and with the type of protease (trypsin, thrombin or urokinase type plasminogen activator (uPA)). The pH dependence of the active site hydrogen-bonding motif is often intricate, constituting a distinct fingerprint of each complex. Isosteric replacements or minor substitutions within the inhibitor that modulate the pK(a) of the phenol hydroxyl involved in short hydrogen bonding, or that affect steric interactions distal to the active site, can significantly shift the pH-dependent structural profile characteristic of the parent scaffold, or produce active site-binding motifs unique to the bound analog.Ionization equilibria at the active site associated with inhibitor binding are probed in a series of the protease-inhibitor complexes through analysis of the pH dependence of the structure and environment of the active site-binding groups involved in short hydrogen bond arrays. Structures determined at high pH (>11), suggest that the pK(a) of His57 is dramatically elevated, to a value as high as approximately 11 in certain complexes. K(i) values involving uPA and trypsin determined as a function of pH for a set of inhibitors show pronounced parabolic pH dependence, the pH for optimal inhibition governed by the pK(a) of the inhibitor phenol involved in short hydrogen bonds. Comparison of structures of trypsin, thrombin and uPA, each bound by the same inhibitor, highlights important structural variations in the S1 and active sites accessible for engineering notable selectivity into remarkably small molecules with low nanomolar K(i) values.  相似文献   

9.
Compounds containing the easily accessible Phe[CH(OH)CH2N(NH)Phe dipeptide isostere as a non-hydrolyzable replacement of the scissile amide bond in the natural substrate are potent inhibitors of HIV-1 protease. The expected symmetric binding pattern of the most potent inhibitor in this series (CGP 53280, IC50 = 9 nM) is illustrated by the X-ray analysis performed with the corresponding enzyme-inhibitor complex.  相似文献   

10.
There is a great need for alternative modes of inhibition for the design of anti-HIV therapies, due to the increased resistance of HIV to currently approved drugs. A novel strategy for generating potent dimerization inhibitors of HIV-1 protease is described based on sidechain-linked interfacial peptides. In a number of cases the activity of these agents against HIV-1 protease was found to be among the most potent reported, with inhibitory constants in the low nM range.  相似文献   

11.

Background

Canonical serine protease inhibitors commonly bind to their targets through a rigid loop stabilised by an internal hydrogen bond network and disulfide bond(s). The smallest of these is sunflower trypsin inhibitor (SFTI-1), a potent and broad-range protease inhibitor. Recently, we re-engineered the contact β-sheet of SFTI-1 to produce a selective inhibitor of kallikrein-related peptidase 4 (KLK4), a protease associated with prostate cancer progression. However, modifications in the binding loop to achieve specificity may compromise structural rigidity and prevent re-engineered inhibitors from reaching optimal binding affinity.

Methodology/Principal Findings

In this study, the effect of amino acid substitutions on the internal hydrogen bonding network of SFTI were investigated using an in silico screen of inhibitor variants in complex with KLK4 or trypsin. Substitutions favouring internal hydrogen bond formation directly correlated with increased potency of inhibition in vitro. This produced a second generation inhibitor (SFTI-FCQR Asn14) which displayed both a 125-fold increased capacity to inhibit KLK4 (K i = 0.0386±0.0060 nM) and enhanced selectivity over off-target serine proteases. Further, SFTI-FCQR Asn14 was stable in cell culture and bioavailable in mice when administered by intraperitoneal perfusion.

Conclusion/Significance

These findings highlight the importance of conserving structural rigidity of the binding loop in addition to optimising protease/inhibitor contacts when re-engineering canonical serine protease inhibitors.  相似文献   

12.
The interaction between 290 structurally diverse human immunodeficiency virus type 1 (HIV-1) protease inhibitors and the immobilized enzyme was analyzed with an optical biosensor. Although only a single concentration of inhibitor was used, information about the kinetics of the interaction could be obtained by extracting binding signals at discrete time points. The statistical correlation between the biosensor binding data, inhibition of enzyme activity (K(i)), and viral replication (EC(50)) revealed that the association and dissociation rates for the interaction could be resolved and that they were characteristic for the compounds. The most potent inhibitors, with respect to K(i) and EC(50) values, including the clinically used drugs, all exhibited fast association and slow dissociation rates. Selective or partially selective binders for HIV-1 protease could be distinguished from compounds that showed a general protein-binding tendency by using three reference target proteins. This biosensor-based direct binding assay revealed a capacity to efficiently provide high-resolution information on the interaction kinetics and specificity of the interaction of a set of compounds with several targets simultaneously.  相似文献   

13.
Peptide substrates and inhibitors of the HIV-1 protease   总被引:11,自引:0,他引:11  
Oligopeptides containing the consensus retroviral protease cleavage sequence Ser/Thr-X-Y-Tyr/Phe-Pro are substrates for purified recombinant HIV-1 protease with Km's in the millimolar range. The minimum sequence containing the consensus pentapeptide which serves as a good substrate is a heptapeptide spanning the P4-P3' residues. Substitution of reduced Phe-Pro or Tyr-Pro dipeptide isosteres or the statine analog 3-hydroxy-4-amino-5-phenylpentanoic acid for the scissile dipeptide afforded inhibitors of HIV-1 protease with Ki values in the micromolar range, three orders of magnitude better in affinity than the corresponding substrates. Inhibitors of HIV-1 protease may provide a novel and potentially useful therapeutic approach to the treatment of acquired immune deficiency syndrome (AIDS).  相似文献   

14.
Aspartates 25 and 125, the active site residues of HIV-1 protease, participate functionally in proteolysis by what is believed to be a general acid-general base mechanism. However, the structural role that these residues may play in the formation and maintenance of the neighboring S1/S1' substrate binding pockets remains largely unstudied. Because the active site aspartic acids are essential for catalysis, alteration of these residues to any other naturally occurring amino acid by conventional site-directed mutagenesis renders the protease inactive, and hence impossible to characterize functionally. To investigate whether Asp-25 and Asp-125 may also play a structural role that influences substrate processing, a series of active site protease mutants has been produced in a cell-free protein synthesizing system via readthrough of mRNA nonsense (UAG) codons by chemically misacylated suppressor tRNAs. The suppressor tRNAs were activated with the unnatural aspartic acid analogues erythro-beta-methylaspartic acid, threo-beta-methylaspartic acid, or beta,beta-dimethylaspartic acid. On the basis of the specific activity measurements of the mutants that were produced, the introduction of the beta-methyl moiety was found to alter protease function to varying extents depending upon its orientation. While a beta-methyl group in the erythro orientation was the least deleterious to the specific activity of the protease, a beta-methyl group in the threo orientation, present in the modified proteins containing threo-beta-methylaspartate and beta,beta-dimethylaspartate, resulted in specific activities between 0 and 45% of that of the wild type depending upon the substrate and the substituted active site position. Titration studies of pH versus specific activity and inactivation studies, using an aspartyl protease specific suicide inhibitor, demonstrated that the mutant proteases maintained bell-shaped pH profiles, as well as suicide-inhibitor susceptibilities that are characteristic of aspartyl proteases. A molecular dynamics simulation of the beta-substituted aspartates in position 25 of HIV-1 protease indicated that the threo-beta-methyl moiety may partially obstruct the adjacent S1' binding pocket, and also cause reorganization within the pocket, especially with regard to residues Val-82 and Ile-84. This finding, in conjunction with the biochemical studies, suggests that the active site aspartate residues are in proximity to the S1/S1' binding pocket and may be spatially influenced by the residues presented in these pockets upon substrate binding. It thus seems possible that the catalytic residues cooperatively interact with the residues that constitute the S1/S1' binding pockets and can be repositioned during substrate binding to orient the active site carboxylates with respect to the scissile amide bond, a process that likely affects the facility of proteolysis.  相似文献   

15.
HemAT-Bs is the heme-based O(2) sensor responsible for aerotaxis control in Bacillus subtilis. In this study, we measured the time-resolved resonance Raman spectra of full-length HemAT-Bs wild-type (WT) and Y133F in the deoxy form and the photoproduct after photolysis of CO-bound form. In WT, the nu(Fe-His) band for the 10 ps photoproduct was observed at higher frequency by about 2 cm(-1) compared with that of the deoxy form. This frequency difference is relaxed in hundreds of picoseconds. This time-dependent frequency shift would reflect the conformational change of the protein matrix. On the other hand, Y133F mutant did not show such a substantial nu(Fe-His) frequency shift after photolysis. Since a hydrogen bond to the proximal His induces an up-shift of the nu(Fe-His) frequency, these results indicate that Tyr133 forms a hydrogen bond to the proximal His residue upon the ligand binding. We discuss a functional role of this hydrogen bond formation for the signal transduction in HemAT-Bs.  相似文献   

16.
We report in this paper the design, by means of computational techniques, of new cyclic urea inhibitors of the HIV aspartic protease. The relationship between the complexation energies of the enzyme with known inhibitors and the experimentally determined log K(i) have been studied and used to predict inhibition constants for new inhibitors.  相似文献   

17.
18.
A novel mechanism of inhibiting HIV-1 protease (HIVp) is presented. Using computational solvent mapping to identify complementary interactions and the Multiple Protein Structure method to incorporate protein flexibility, we generated a receptor-based pharmacophore model of the flexible flap region of the semiopen, apo state of HIVp. Complementary interactions were consistently observed at the base of the flap, only within a cleft with a specific structural role. In the closed, bound state of HIVp, each flap tip docks against the opposite monomer, occupying this cleft. This flap-recognition site is filled by the protein and cannot be identified using traditional approaches based on bound, closed structures. Virtual screening and dynamics simulations show how small molecules can be identified to complement this cleft. Subsequent experimental testing confirms inhibitory activity of this new class of inhibitor. This may be the first new inhibitor class for HIVp since dimerization inhibitors were introduced 17 years ago.  相似文献   

19.
Crucial amides for dimerization inhibitors of HIV-1 protease   总被引:1,自引:0,他引:1  
An inhibitor based on crosslinked peptides from the interfacial region of HIV-1 protease, previously shown to act by dimerization inhibition, was modified by N-methylation to ascertain the importance of the amide hydrogens on inhibition. The effects of N-methylation on HIV-1 protease inhibition, as well as the effects on degradation by proteases are described.  相似文献   

20.
In AIDS therapy, attempts have been made to inhibit the virus-encoded enzymes, e.g. HIV-1 protease, using active site-directed inhibitors. This approach is questionable, however, due to virus mutations and the high toxicity of the drugs. An alternative method to inhibit the dimeric HIV protease is the targeting of the interface region of the protease subunits in order to prevent subunit dimerization and enzyme activity. This approach should be less prone to inactivation by mutation. A list of improved 'dimerization inhibitors' of HIV-1 protease is presented. The main structural features are a short 'interface' peptide segment, including non-natural amino acids, and an aliphatic N-terminal blocking group. The high inhibitory power of some of the lipopeptides [e.g. palmitoyl-Tyr-Glu-Leu-OH, palmitoyl-Tyr-Glu-(L-thyronine)-OH, palmitoyl-Tyr-Glu-(L-biphenyl-alanine)-OH] with low nanomolar Ki values in the enzyme test suggests that mimetics with good bio-availability can be derived for AIDS therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号