共查询到20条相似文献,搜索用时 9 毫秒
1.
The only reliable method of predicting spontaneous ovulation relies on the detection of the preovulatory luteinizing hormone (LH) surge in urine or plasma. The efficiency of the detection by means of plasma LH radioimmunoassay, urine LH radioimmunoassay or urine LH agglutination inhibition immunoassay were compared in 33 patients. The detection of the onset of LH surge was simultaneous in plasma and urine in only 11 cases. In two thirds of the patients, the urine LH surge onset is delayed by 3 to 21 h as compared with plasma LH surge onset. In some of these cases the oocyte would probably be missed if the laparoscopy had been scheduled according to urine data. 相似文献
2.
The phenomenon of splitting of locomotor activity rhythms in constant light has implied that the mammalian circadian pacemaker is composed of multiple interacting circadian oscillators. Exposure of male Syrian hamsters to novel running wheels also induces splitting in some reports, although novel wheel running (NWR) is better known for its effects on altering circadian phase and the length of the free-running period. In three experiments, the authors confirm and extend earlier reports of split rhythms induced by NWR. Male Syrian hamsters, entrained to LD 14:10, were transferred for 6 to 11 consecutive days to darkened novel Wahmann wheels at ZT 4 and were returned to their home cages at ZT 9. All hamsters ran robustly in the novel wheels. NWR caused a marked reorganization of home cage wheel-running behavior: Activity onsets delayed progressively with each additional day of NWR. After 11 days, activity onset in the nighttime scotophase was delayed by 7 h and disappeared completely in 2 hamsters (Experiment 1). After 6 to 7 days of NWR (Experiment 2), activity onset delayed by 5 h. Transfer of hamsters to constant darkness (DD) after 7 days of NWR revealed clearly split activity rhythms: The delayed nighttime activity bout was clearly identifiable and characterized by a short duration. A second bout associated with the former time of NWR was equally distinct and exhibited a similarly short duration. These components rejoined after 3 to 5 days in DD accomplished via delays and advances of the nighttime and afternoon components, respectively. The final experiment established that rejoining of activity components could be prevented by perpetuating the light-dark:light-dark cycle used to induce split rhythms. The data suggest that NWR causes selective phase shifting of some circadian oscillators and that component oscillators interact strongly in constant darkness. 相似文献
3.
Estrogen induces estrus unaccompanied by a preovulatory surge in luteinizing hormone in suckled sows
The objective was to determine if progressive changes occurred in incidence of estrus and patterns of luteinizing hormone (LH) after estradiol benzoate (EB) administration at three stages of lactation. Estradiol benzoate (800 micrograms) was injected at the beginning of the second (7.8 +/- 0.3 days, range 7-8, n = 4), third (15.6 +/- 0.3 days, range 15-16 days, n = 5), or fourth (23.3 +/- 0.5 days, range 22-24, n = 4) wk of lactation. Interval to estrus (h) and proportion in estrus (in parentheses) were 72 (1/4), 88.5 (4/5), and 99 (4/4; pooled SEM = 3.5) for the second, third, and fourth weeks, respectively. Only one animal ovulated during lactation (third week). This animal had a progesterone concentration of 17 ng/ml 1 wk after estrus and an LH concentration above 2.0 ng/ml for 72 through 90 h after EB. In other sows, LH remained less than 1.0 ng/ml after EB. Patterns of LH after EB in sows treated during the fourth week of lactation were increased to a maximum of 0.76 ng/ml by 120 h after EB, which was greater than for those treated during the second or third week (maxima of 0.38 and 0.32 ng/ml, respectively; pooled SEM = 0.07; p less than 0.05). Concentrations of LH in sows that exhibited estrus were greater both before and after treatment than in sows that did not exhibit estrus after EB (p less than 0.05). By 2 wk after weaning, 8 sows had ovulated (6 of these exhibited estrus), and there were no effects of stage of lactation on these responses. We concluded that the behavioral responsiveness to EB increased as lactation progressed. The increased LH in sows treated during the fourth week indicated a partial recovery of the positive feedback response to EB. These data suggested that separate mechanisms caused behavioral and gonadotropin responses to EB in lactating sows. 相似文献
4.
The luteinizing hormone surge regulates circadian clock gene expression in the chicken ovary 总被引:1,自引:0,他引:1
The molecular circadian clock mechanism is highly conserved between mammalian and avian species. Avian circadian timing is regulated at multiple oscillatory sites, including the retina, pineal, and hypothalamic suprachiasmatic nucleus (SCN). Based on the authors' previous studies on the rat ovary, it was hypothesized that ovarian clock timing is regulated by the luteinizing hormone (LH) surge. The authors used the chicken as a model to test this hypothesis, because the timing of the endogenous LH surge is accurately predicted from the time of oviposition. Therefore, tissues can be removed before and after the LH surge, allowing one to determine the effect of LH on specific clock genes. The authors first examined the 24-h expression patterns of the avian circadian clock genes of Bmal1, Cry1, and Per2 in primary oscillatory tissues (hypothalamus and pineal) as well as peripheral tissues (liver and ovary). Second, the authors determined changes in clock gene expression after the endogenous LH surge. Clock genes were rhythmically expressed in each tissue, but LH influenced expression of these clock genes only in the ovary. The data suggest that expression of ovarian circadian clock genes may be influenced by the LH surge in vivo and directly by LH in cultured granulosa cells. LH induced rhythmic expression of Per1 and Bmal1 in arrhythmic, cultured granulosa cells. Furthermore, LH altered the phase and amplitude of clock gene rhythms in serum-shocked granulosa cells. Thus, the LH surge may be a mechanistic link for communicating circadian timing information from the central pacemaker to the ovary. 相似文献
5.
6.
The size of the gestational sac and embryonic mass as well as the embryonic heartbeat were examined ultrasonographically from Day 16 to 25 of pregnancy in 15 beagle bitches, using a 7.5 MHz transducer. Results were more consistent when gestational age was based on the day of the preovulatory luteinizing hormone (LH) surge than on the day of first breeding. The gestational sac was first detected at 17 to 20 d after the LH surge, when it was 1 to 2 mm in diameter and 1 to 4 mm in length. The diameter and length of the gestational sac increased exponentially. At Day 25, the mean diameter was 8.2 +/- 0.3 mm (7 to 9 mm) and mean length was 20.3 +/- 1.1 mm (14 to 24 mm). Embryonic mass and heartbeat were first detected at 23 to 25 d after the LH surge. The embryonic heartbeat was detected on the day of or the day after detection of the embryonic mass, at which time the embryonic mass was 1 to 4 mm in length and was located at the periphery of the gestational sac. 相似文献
7.
Preantral follicles of cyclic hamsters were isolated on proestrus, estrus and diestrus I, incubated for 3 h in 1 ml TC-199 containing 1 microgram ovine luteinizing hormone (LH) (NIH-S22), and the concentrations of progesterone (P), androstenedione (A) and estradiol (E2) determined by radioimmunoassay. At 0900-1000 h on proestrus (pre-LH surge) preantral follicles produced 2.4 +/- 0.3 ng A/follicle per 3 h, less than 100 pg E2/follicle and less than 250 pg P/follicle. At the peak of the LH surge (1500-1600 h) preantral follicles produced 1.8 +/- 0.2 ng P and 1.9 +/- 0.1 A and less than 100 pg E2/follicle. After the LH surge (1900-2000 h proestrus and 0900-1000 h estrus) preantral follicles were unable to produce A and E2 but produced 4.0 +/- 1.0 and 5.0 +/- 1.1 ng P/follicle, respectively. By 1500-1600 h estrus, the follicles produced 8.1 +/- 3.1 ng P/follicle but synthesized A (1.6 +/- 0.2 ng/follicle) and E2 (362 +/- 98 pg/follicle). On diestrus 1 (0900-1000 h), the large preantral-early antral follicles produced 1.9 +/- 0.3 ng A, 2.4 +/- 0.4 ng E2 and 0.7 +/- 0.2 ng P/follicle. Thus, there was a shift in steroidogenesis by preantral follicles from A to P coincident with the LH surge; then, a shift from P to A to E2 after the LH surge. The LH/follicle-stimulating hormone (FSH) surges were blocked by administration of 6.5 mg phenobarbital (PB)/100 g BW at 1300 h proestrus. On Day 1 of delay (0900-1000 h) these follicles produced large quantities of A (2.2 +/- 0.2 ng/follicle) and small amounts of E2 (273 +/- 27 pg/follicle) but not P (less than 250 pg/follicle).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
9.
10.
LH surges occur 3 h later in intact anovulatory hamsters exposed to nonstimulatory photoperiods (6L:18D) for 8 wk than the proestrous LH surges from the same hamsters housed in 6L:18D for 3 weeks. In ovariectomized hamsters housed in 6L:18D for 3 wk, the LH surge was observed at the same time of day as in intact anovulatory hamsters at 8 wk. Implanting Silastic capsules containing estradiol benzoate (EB) advanced the timing of the daily surge of LH in ovariectomized hamsters housed in 6L:18D for 8 wk. EB also affected the magnitude of the LH surge in hamsters housed in 6L:18D for 8 wk. Two days after receiving EB implants, daily LH surges in anovulatory hamsters were suppressed by 75% and in ovariectomized "regressed" hamsters by 37%. This difference between groups was probably due to ovarian progesterone in intact animals. Estrogen is not required for LH surges in anovulatory hamsters but suppresses LH release when administered exogenously. The delay in the timing of the LH surge in anovulatory hamsters may result from the decline in estrogen resulting from short photoperiod exposure. 相似文献
11.
The negative effect of estradiol-17beta (E2) on LH, based on exogenous E2 treatments, and the reciprocal effect of LH on endogenous E2, based on hCG treatments, were studied throughout the ovulatory follicular wave during a total of 103 equine estrous cycles in seven experiments. An initial study developed E2 treatment protocols that approximated physiologic E2 concentrations during the estrous cycle. On Day 13 (ovulation = Day 0), when basal concentrations of E2 and LH precede the ovulatory surges, exogenous E2 significantly depressed LH concentrations to below basal levels. Ablation of all follicles > or = 10 mm when the largest was > or =20 mm resulted in an increase in percentage change in LH concentration within 8 h that was greater (P < 0.03) than for controls or E2-treated/follicle-ablated mares. Significant decreases in LH occurred when E2 was given when the largest follicle was either > or =25 mm, > or =28 mm, > or =35 mm, or near ovulation. Treatment with 200 or 2000 IU of hCG did not affect E2 concentrations during the initial portion of the LH surge (largest follicle, > or =25 mm), but 2000 IU significantly depressed E2 concentrations before ovulation (largest follicle, > or =35 mm). Results indicated a continuous negative effect of E2 on LH throughout the ovulatory follicular wave and may be related to the long LH surge and the long follicular phase in mares. Results also indicated that a reciprocal negative effect of LH on E2 does not develop until the E2 surge reaches a peak. 相似文献
12.
Binding of 125I-prolactin (Prl) to hamster ovarian homogenates was found to decrease markedly at the time of the preovulatory gonadotropin surge (PGS). Saturation analysis revealed that the decrease was due to a reduction in the number of available Prl receptors and not due to a change in binding affinity. Loss of Prl receptors following the PGS was not affected by treatment with ergocryptine to block the release of pituitary Prl, indicating that the reduction in the number of available Prl receptors was not due to increased occupancy by endogenous Prl. Loss of Prl receptors was prevented by treatment with phenobarbital (Phen) to block the normal luteinizing hormone (LH)/follicle-stimulating hormone (FSH) surge; whereas, an injection of 50 micrograms of LH or 50 micrograms FSH (but not 100 micrograms Prl) induced a marked decrease in Prl receptors in Phen-treated hamsters. To determine whether Prl receptor loss induced by 50 micrograms FSH might be due to LH contamination, Phen-treated hamsters were injected with minimal ovulatory doses of LH and FSH. Injection of 5 micrograms or 2.5 micrograms LH induced a loss of Prl receptors in 90% and 70% of Phen-treated hamsters, respectively. In contrast, injection of 5 micrograms or 2.5 micrograms FSH induced a loss of Prl receptors in 0% and 20% of Phen-treated hamsters, respectively. These results indicate that the PGS causes an acute heterologous down regulation of ovarian Prl receptors and suggest that this down regulation may be due principally to the action of LH. 相似文献
13.
Simultaneous measurements of plasma LH, body temperature, and locomotor activity were made in laying turkey hens and are reported. Blood samples were remotely collected using a jugular cannula system, and body temperature and locomotor activity were remotely monitored using a radiotelemetry system in freely moving laying turkeys. Under a photoschedule of 14L:10D, the period for preovulatory surges of LH was 25.7 +/- 0.4 h while the periods for peak body temperature and onset of sustained locomotor activity were 24.9 +/- 0.4 and 25.7 +/- 0.5 h, respectively. During exposure to constant light, the periods for preovulatory surges of LH, peak body temperature, and onset of sustained locomotor activity increased to 27.9 +/- 0.9, 26.7 +/- 0.7, and 27.4 +/- 0.7 h, respectively. With the 14L:10D photoschedule, initiation of LH surges was restricted to the scotophase, but after 8 days of constant light, initiation of LH surges had dispersed throughout the 24-h subjective day and night. With constant light, the amplitude of the peak body temperature rhythm decreased, while the duration of the locomotor activity rhythm became broadened and, in some birds, disorganized. Peak body temperature and onset of locomotor activity rhythms and LH surges did not coincide, even though peak body temperature, onset of locomotor activity, and LH surges had similar periods. It is concluded that 1) the photoschedule influences the periods of the LH surge, peak body temperature, and onset of locomotor activity; and 2) a specific or direct relationship between the rhythms of LH surge, body temperature, and locomotor activity remains to be determined in laying turkey hens. 相似文献
14.
The purpose of this study was to determine the occurrence of and the regulatory mechanisms involved in priming of the pituitary to GnRH before the preovulatory LH surge in sheep. Experiment 1: Forty-two ewes had progestagen devices removed after 14 days and were assigned to luteal (Lut) or follicular (Foll) groups. Fifteen days later, blood sampling was initiated either immediately or 36 h after induced luteolysis in groups Lut and Foll, respectively. After 4 h, ewes were administered either saline (n = 5) or 250 ng (n = 8) or 10 microg (n = 8) of GnRH. Five ewes per treatment group were killed 1 h later, while remaining animals were blood sampled for a further 7 h. Experiment 2: Eighteen ewes were allocated to Lut and Foll groups (described above). Blood samples were collected from 2 h before GnRH (10 microg) treatment until 7 h after. Despite up-regulated GnRH-R mRNA levels in Foll ewes, pituitary content and plasma levels of LH and LHbeta mRNA levels were similar between groups. Mean FSHbeta mRNA and plasma FSH levels were elevated in Lut ewes but declined after GnRH treatment. Inversely, plasma estradiol and inhibin-A concentrations were higher in Foll ewes and declined after GnRH treatment. Fewer LH(+ve)/secretogranin II(-ve) (SgII(-ve)) granules were present in gonadotropes of Foll ewes, coincident with increased basal LH levels. Fewer smaller sized granules were present after GnRH treatment. In conclusion, there was no evidence of self-priming before onset of the preovulatory LH surge. Constitutive release of LH(+ve)/SgII(-ve) granules may maintain basal LH levels while smaller sized, presumably mature granules may be preferentially released after GnRH stimulation. 相似文献
15.
Estradiol induces and progesterone inhibits the preovulatory surges of luteinizing hormone and follicle-stimulating hormone in heifers 总被引:1,自引:0,他引:1
Objectives were to determine: 1) whether estradiol, given via implants in amounts to stimulate a proestrus increase, induces preovulatory-like luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges; and 2) whether progesterone, given via infusion in amounts to simulate concentrations found in blood during the luteal phase of the estrous cycle, inhibits gonadotropin surges. All heifers were in the luteal phase of an estrous cycle when ovariectomized. Replacement therapy with estradiol and progesterone was started immediately after ovariectomy to mimic luteal phase concentrations of these steroids. Average estradiol (pg/ml) and progesterone (ng/ml) resulting from this replacement were 2.5 and 6.2 respectively; these values were similar (P greater than 0.05) to those on the day before ovariectomy (2.3 and 7.2, respectively). Nevertheless, basal concentrations of LH and FSH increased from 0.7 and 43 ng/ml before ovariectomy to 2.6 and 96 ng/ml, respectively, 24 h after ovariectomy. This may indicate that other ovarian factors are required to maintain low baselines of LH and FSH. Beginning 24 h after ovariectomy, replacement of steroids were adjusted as follows: 1) progesterone infusion was terminated and 2 additional estradiol implants were given every 12 h for 36 h (n = 5); 2) progesterone infusion was maintained and 2 additional estradiol implants were given every 12 h for 36 h (n = 3); or 3) progesterone infusion was terminated and 2 additional empty implants were given every 12 h for 36 h (n = 6). When estradiol implants were given every 12 h for 36 h, estradiol levels increased in plasma to 5 to 7 pg/ml, which resembles the increase in estradiol that occurs at proestrus. After ending progesterone infusion, levels of progesterone in plasma decreased to less than 1 ng/ml by 8 h. Preovulatory-like LH and FSH surges were induced only when progesterone infusion was stopped and additional estradiol implants were given. These surges were synchronous, occurring 61.8 +/- 0.4 h (mean +/- SE) after ending infusion of progesterone. We conclude that estradiol, at concentrations which simulate those found during proestrus, induces preovulatory-like LH and FSH surges in heifers and that progesterone, at concentrations found during the luteal phase of the estrous cycle, inhibits estradiol-induced gonadotropin surges. Furthermore, ovarian factors other than estradiol and progesterone may be required to maintain basal concentrations of LH and FSH in heifers. 相似文献
16.
The changes in serum gonadotrophins in male hamsters following one injection of 15 μg luteinizing hormone releasing hormone (LHRH) (Group A) were compared with those following the last injection of LHRH in animals receiving an injection approximately every 12 hr for 4 days (Group B) or 12 days (Group C). Peak follicle stimulating hormone (FSH) levels (ng/ml) were 1776±218 (Group A), 2904±346 (Group B), and 4336±449 (Group C). Peak luteinizing hormone (LH) values (ng/ml) were 1352±80 (Group A), 410±12 (Group B), and 498±53 (Group C). Serum FSH:LH ratios, calculated from the concentrations measured 16 hr after the last LHRH injections, were higher in Groups B and C than in Group A. Similar injections of LHRH (100 ng or 15 μg/injection) for 6 days elevated the serum FSH:LH ratio in intact males. Five such LHRH injections (100 ng/injection) blunted the rise in serum LH in orchidectomized hamsters. Direct effects of LHRH on gonadotrophin secretory dynamics or altered brain-pituitary-testicular interactions may alter the ratio of FSH to LH in the hamster. 相似文献
17.
18.
Individual hamster pups were maintained in constant dim light from just prior to birth, and their circadian wheel-running activity rhythms were recorded beginning at 18 days of age. Records of the postweaning free-running activity rhythm were used to determine the phase of a pup's rhythm on the day of weaning. Two groups of pups (LD and DL) were born to mothers that had been entrained before birth to light-dark cycles 12 hr out of phase. Both groups of pups were raised in constant dim light by foster mothers that had been entrained to only one of the prenatal cycles (LD). Thus pups born to mothers from different cycles were exposed to identical rhythmic environments postnatally. Despite the similar postnatal treatment, the two groups of pups showed activity rhythms at weaning with very different phases. The LD pups, born to and raised by LD mothers, were approximately synchronous with one another and with their foster mothers. The DL pups, born to DL mothers, but raised by LD mothers, were not synchronous with one another or with their foster mothers. Half of the DL pups showed phases predicted by their prenatal treatment, but the other half showed scattered phases. The results demonstrate that phase at weaning is affected by prenatal rhythmicity, and suggest that the circadian pacemaker underlying the activity rhythm is already functional and entrained at, or before, birth. 相似文献
19.
The preovulatory surges of GnRH and LH are activated by increased concentrations of circulating estradiol, but ovulation is blocked when progesterone concentrations are elevated. Although it is has been shown that this action of progesterone is due to a central inhibition of the GnRH surge, the mechanisms that underlie the blockade of the GnRH surge are poorly understood. In this study we investigated whether progesterone can block the estradiol-dependent activation stage of the GnRH surge induction process, and thus prevent expression of the LH surge. The results demonstrated that exposure to progesterone for half or the full duration of the activation stage can prevent the stimulation of LH surges by estradiol (experiment 1), whereas exposure to progesterone midway though a period of estradiol exposure, which in itself is sufficient to activate the surge, did not block the LH surge (experiment 2). These results suggest that progesterone 1) disrupts activation of the surge induction system in response to a stimulatory estradiol signal and 2) does not compromise the ability of animals to respond to a stimulatory estradiol signal applied immediately after progesterone exposure. Because the disruptive effects of activated progesterone in response to estradiol are rapid but transient, it may be that progesterone directly interferes with the activation of estradiol-responsive neural systems to block the GnRH/LH surge. 相似文献
20.
The involvement of androgens in the control of ovulation has been assessed by administration of the androgen antagonist, hydroxyflutamide, to prepubertal rats treated with pregnant mare's serum gonadotropin (PMSG) to induce first estrus and ovulation. Without human chorionic gonadotropin (hCG) injection, only 46% of rats that received six 5-mg, s.c. injections of hydroxyflutamide at 12-h intervals, beginning an hour before s.c. injection of 4 IU PMSG on Day-2 (Day 0 = the day of proestrus), had ovulated a mean of 1.3 +/- 0.4 oocytes per rat when killed on the morning of Day 1, whereas 92% of sesame oil-treated controls had ovulated a mean of 6.9 +/- 0.6 oocytes. After i.p. injection of hCG at 1600 h on Day 0, 92% of hydroxyflutamide-treated rats ovulated a mean of 8.3 +/- 1.2 oocytes compared to 100% of controls, which ovulated 7.3 +/- 0.4 oocytes per rat: these groups were not significantly different from each other, nor from control rats that received no hCG. Thus, exogenous hCG completely overcame the inhibitory effect of hydroxyflutamide on ovulation. Rats treated with PMSG and hydroxyflutamide without hCG were killed either on the morning of Day 0 to determine serum and ovarian steroid levels or on the afternoon of Day 0 to determine serum LH levels. Serum levels of estradiol-17 beta and testosterone in hydroxyflutamide-treated rats were significantly higher (178% and 75%, respectively; p less than 0.01) than levels observed in controls on the morning of Day 0. Ovarian concentrations of the steroids were also elevated in hydroxyflutamide-treated rats (p less than 0.01 for testosterone only).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献