首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Identification of novel splice variants of ARNT and ARNT2 in the rat   总被引:1,自引:0,他引:1  
Most of the biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are mediated by the bHLH/PAS protein AH receptor (AHR). For regulation of gene activities, AHR dimerizes with another member of the bHLH/PAS protein family, AHR nuclear translocator (ARNT). A substrain of Wistar rats, Han/Wistar (Kuopio) (H/W), is about 1000-fold more resistant to the acute lethality of TCDD than other strains, exemplified by Long-Evans (Turku/AB) (L-E); the LD50 values for these two strains are >9600 and 10-20 microg/kg, respectively. Previous studies have demonstrated that the major reason for the exceptional TCDD resistance of H/W rats lies in their AHR, which is remodeled at its C-terminal transactivation domain, but there appears to be another contributing gene product. The present study set out to compare the primary structure of ARNT and the closely related ARNT2 proteins in H/W and L-E rats by cDNA cloning. To our surprise, we found several isoforms of these proteins only one of which has previously been reported in rats. All of the isoforms appeared to arise from alternative splicing. For ARNT, isoforms with deletions at exon 5, 3(') end of exon 6 or 5(') end of exon 11, or with an insertion at 5(') end of exon 20 were discovered. There was also interindividual variation in the number of glutamine-encoding codons at 5(') end of exon 16. The most exciting new variant was revealed for ARNT2, because the insertion found at 5(') end of exon 19 disrupts the functionally critical transactivation domain in the protein, implying a dominant negative role for this isoform. The relative expression levels of the variants did not differ in the two rat strains, nor did TCDD modify the ratios, suggesting that the variants do not contribute to TCDD resistance. However, the regulation of ARNT and ARNT2 activities may be more intricate than previously assumed.  相似文献   

4.
5.
研究谷氨酰半胱氨酸合成酶催化亚单位(GCLC)基因上游调控序列中2个AHR/ARNT元件的功能,从而了解γ-谷氨酰半胱氨酸合成酶(γ-GCS)基因转录调节特征.分别构建缺失2个位点AHR/ARNT元件的GCLC基因上游近端序列的萤光素酶报道基因载体以及含有2个AHR/ARNT元件核心序列的萤光素酶报道基因载体.转染大鼠支气管上皮细胞(RTE),比较检测野生与缺失报道载体的基因转录调控效率;利用电泳迁移率变动实验(EMSA)和超级迁移率变动实验检测AHR/ARNT元件与AHR以及ARNT因子的特异性结合;通过转染AHR因子真核表达质粒进一步确定AHR/ARNT元件与AHR结合在GCLC基因表达中的最终作用.结果显示,相比其野生序列,缺失AHR/ARNT元件(-1 090~-1 085)和双缺失AHR/ARNT元件(-1 090~-1 085,-215~-210)的GCLC上游调控序列报道载体在RTE显著提高萤光素酶表达(均P<0.05),而缺失AHR/ARNT元件(-215~-210)则未见显著影响(P>0.05); 独立AHR/ARNT元件(-1 090~-1 085)具有转录促进作用(P<0.05)而独立AHR/ARNT元件(-215~-210)无明显影响(P>0.05).转染CMV2-AHR能够抑制野生型和缺失型报道载体的萤光素酶表达(P<0.05).EMSA证实GCLC基因上游调控区域的2个AHR/ARNT元件均有核蛋白结合,并且超级迁移率变动实验显示结合的蛋白主要含有转录因子AHR以及ARNT.因此,2个AHR/ARNT元件均可以与异源二聚体AHR/ARNT结合,AHR/ARNT元件(-1 090~-1 085)是GCLC基因中重要的抑制元件.  相似文献   

6.
7.
8.
9.
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of planar halogenated aromatic hydrocarbons (PHAHs). Bony fishes exposed to PHAHs exhibit a wide range of developmental defects. However, functional roles of fish AHR are not yet fully understood, compared with those of mammalian AHRs. To investigate the potential sensitivity to PHAHs toxic effects, an AHR cDNA was initially cloned and sequenced from red seabream (Pagrus major), an important fishery resource in Japan. The present study succeeded in identifying two highly divergent red seabream AHR cDNA clones, which shared only 32% identity in full-length amino acid sequence. The phylogenetic analysis revealed that one belonged to AHR1 clade (rsAHR1) and another to AHR2 clade (rsAHR2). The rsAHR1 encoded a 846-residue protein with a predicted molecular mass of 93.2 kDa, and 990 amino acids and 108.9 kDa encoded rsAHR2. In the N-terminal half, both rsAHR genes included bHLH and PAS domains, which participate in ligand binding, AHR/ARNT dimerization and DNA binding. The C-terminal half, which is responsible for transactivation, was poorly conserved between rsAHRs. Quantitative analyses of both rsAHRs mRNAs revealed that their tissue expression profiles were isoform-specific; rsAHR1 mRNA expressed primarily in brain, heart, ovary and spleen, while rsAHR2 mRNA was observed in all tissues examined, indicating distinct roles of each rsAHR. Furthermore, there appeared to be species-differences in the tissue expression profiles of AHR isoforms between red seabream and other fish. These results suggest that there are isoform- and species-specific functions in piscine AHRs.  相似文献   

10.
11.
Reproductive changes have been observed in painted turtles from a site with known contamination located on Cape Cod, MA, USA. We hypothesize that these changes are caused by exposure to endocrine-disrupting compounds and that genes involved in reproduction are affected. The aryl hydrocarbon receptor (AHR) is an orphan receptor that is activated by environmental contaminants. AHR mRNA was measured in turtles exposed to soil collected from a contaminated site. Adult turtles were trapped from the study site (Moody Pond, MP) or a reference site and exposed to laboratory environments containing soil from either site. The red-eared slider was used to assess neonatal exposure to soil and water from the sites. The environmental exposures occurred over a 13-month period. Juveniles showed an age-dependent increase in brain AHR1. Juvenile turtles exposed to the MP environment had elevated gonadal AHR1. Adult turtles exposed to the MP environment showed significantly decreased brain AHR2. The painted turtle AHR is the first complete reptile AHR cDNA sequence. Phylogenetic analysis of the painted turtle AHR showed that it clusters with other AHR2s. Partial AHR1 and partial AHR2 cDNA sequences were cloned from the red-eared slider. MEME analysis identified 18 motifs in the turtle AHRs, showing high conservation between motifs that overlapped functional regions in both AHR isoforms.  相似文献   

12.
13.
14.
15.
16.
17.
The aryl hydrocarbon receptor repressor (AHRR) is a negative regulator of AH receptor (AHR), which mediates most of the toxic and biochemical effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AHR has been shown to be the major reason for the exceptionally wide (ca. 1000-fold) sensitivity difference in acute toxicity of TCDD between two rat strains, sensitive Long-Evans (Turku/AB) (L-E) and resistant Han/Wistar (Kuopio) (H/W), but there is another, currently unknown contributing factor involved. In the present study, we examined AHRR structure and expression in these rat strains to find out whether AHRR could be this auxiliary factor. Molecular cloning of AHRR coding region showed that consistent with AHRR proteins in other species, the N-terminal end of rat AHRR is highly conserved, but PAS B and Q-rich domains are severely truncated or lacking. Identical structures were recorded in both strains. Next, the time-, dose-, and tissue-dependent expression of AHRR was determined using quantitative real-time RT-PCR. In liver, AHRR expression was very low in untreated rats, but it increased rapidly after TCDD exposure (100microg/kg). Testis exhibited the highest constitutive expression of AHRR, whereas kidney, spleen, and heart showed the highest induction of AHRR in response to TCDD treatment. Again, no marked differences were found between H/W and L-E rats, implying that AHRR is not the auxiliary contributing factor to the strain difference in TCDD sensitivity. However, simultaneous measurement of CYP1A1 mRNA reinforced the view that AHRR is an important determinant of tissue-specific responsiveness to TCDD.  相似文献   

18.
19.
20.
The aryl hydrocarbon receptor (AHR) contains signals for both nuclear import and nuclear export (NES). The purpose of the studies in this report was to determine the relationship between the nuclear export of the AHR and AHR-mediated gene regulation. Blockage of nuclear export in HepG2 cells with leptomycin B (LMB) resulted in increased levels of AHR-AHR nuclear translocator (ARNT) complex in the nucleus and correlative reductions in agonist-stimulated AHR degradation. However, LMB exposure inhibited agonist-mediated induction of numerous AHR-responsive reporter genes by 75 to 89% and also inhibited induction of endogenous CYP1A1. LMB did not transform the AHR to a ligand binding species or affect activation by TCDD (2, 3,7,8-tetrachlorodibenzo-p-dioxin). Mutagenesis of leucines 66 and 71 of the putative AHR NES resulted in a protein with reduced function in dimerization to ARNT and binding to DNA, while alanine substitution at leucine 69 (AHR(A69)) resulted in an AHR that bound with ARNT and associated with DNA. AHR(A69) protein injected directly into the nuclei of E36 cells remained nuclear following 6 h of agonist stimulation. In transient-transfection assays, AHR(A69) accumulated within the nucleus was not degraded efficiently following agonist exposure. Finally, AHR(A69) supported induction of AHR-responsive reporter genes in an agonist-dependent manner. These findings show that it is possible to generate an AHR protein defective in nuclear export that is functional in agonist-mediated gene induction. This implies that the negative effect of LMB on agonist-mediated gene induction is independent of the nuclear export of the AHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号