首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets to amplify all members of large, diverse and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers (∼3700 18-mers or ∼2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus (FMDV), hemagglutinin (HA) and neuraminidase (NA) segments of influenza A virus, Norwalk virus, and HIV-1. We empirically demonstrated the application of the software with a multiplex set of 16 short (10 nt) primers designed to amplify the Poxviridae family to produce a specific amplicon from vaccinia virus.  相似文献   

2.
3.

Background

Influenza viruses exist as a large group of closely related viral genomes, also called quasispecies. The composition of this influenza viral quasispecies can be determined by an accurate and sensitive sequencing technique and data analysis pipeline. We compared the suitability of two benchtop next-generation sequencers for whole genome influenza A quasispecies analysis: the Illumina MiSeq sequencing-by-synthesis and the Ion Torrent PGM semiconductor sequencing technique.

Results

We first compared the accuracy and sensitivity of both sequencers using plasmid DNA and different ratios of wild type and mutant plasmid. Illumina MiSeq sequencing reads were one and a half times more accurate than those of the Ion Torrent PGM. The majority of sequencing errors were substitutions on the Illumina MiSeq and insertions and deletions, mostly in homopolymer regions, on the Ion Torrent PGM. To evaluate the suitability of the two techniques for determining the genome diversity of influenza A virus, we generated plasmid-derived PR8 virus and grew this virus in vitro. We also optimized an RT-PCR protocol to obtain uniform coverage of all eight genomic RNA segments. The sequencing reads obtained with both sequencers could successfully be assembled de novo into the segmented influenza virus genome. After mapping of the reads to the reference genome, we found that the detection limit for reliable recognition of variants in the viral genome required a frequency of 0.5% or higher. This threshold exceeds the background error rate resulting from the RT-PCR reaction and the sequencing method. Most of the variants in the PR8 virus genome were present in hemagglutinin, and these mutations were detected by both sequencers.

Conclusions

Our approach underlines the power and limitations of two commonly used next-generation sequencers for the analysis of influenza virus gene diversity. We conclude that the Illumina MiSeq platform is better suited for detecting variant sequences whereas the Ion Torrent PGM platform has a shorter turnaround time. The data analysis pipeline that we propose here will also help to standardize variant calling in small RNA genomes based on next-generation sequencing data.  相似文献   

4.
Although metagenomics has been previously employed for pathogen discovery, its cost and complexity have prevented its use as a practical front-line diagnostic for unknown infectious diseases. Here we demonstrate the utility of two metagenomics-based strategies, a pan-viral microarray (Virochip) and deep sequencing, for the identification and characterization of 2009 pandemic H1N1 influenza A virus. Using nasopharyngeal swabs collected during the earliest stages of the pandemic in Mexico, Canada, and the United States (n = 17), the Virochip was able to detect a novel virus most closely related to swine influenza viruses without a priori information. Deep sequencing yielded reads corresponding to 2009 H1N1 influenza in each sample (percentage of aligned sequences corresponding to 2009 H1N1 ranging from 0.0011% to 10.9%), with up to 97% coverage of the influenza genome in one sample. Detection of 2009 H1N1 by deep sequencing was possible even at titers near the limits of detection for specific RT-PCR, and the percentage of sequence reads was linearly correlated with virus titer. Deep sequencing also provided insights into the upper respiratory microbiota and host gene expression in response to 2009 H1N1 infection. An unbiased analysis combining sequence data from all 17 outbreak samples revealed that 90% of the 2009 H1N1 genome could be assembled de novo without the use of any reference sequence, including assembly of several near full-length genomic segments. These results indicate that a streamlined metagenomics detection strategy can potentially replace the multiple conventional diagnostic tests required to investigate an outbreak of a novel pathogen, and provide a blueprint for comprehensive diagnosis of unexplained acute illnesses or outbreaks in clinical and public health settings.  相似文献   

5.
The 3'- and 5'-terminal nucleotides of the genome segments of an influenza A, B, and C virus were identified by directly sequencing viral RNA using two different sequencing techniques. A high degree of conservation at the 3' ends as well as at the 5' ends was observed among the genome segments of each virus and among the segments of the three different virus types. A uridine-rich region was observed from positions 17 through 22 at the 5' end of each segment. Moreover, the conserved 3' and 5'-terminal sequences showed partial and inverted complementarity. This feature results in very similar sequences at the 3' ends of the plus and minus strand RNAs and may also enable single-strand RNAs of influenza virus to form “panhandle” structures. Inverted complementary repeats may play an important role in initiation of viral RNA replication.  相似文献   

6.
Xu J  Fonseca DM 《Mitochondrial DNA》2011,22(5-6):155-158
Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.  相似文献   

7.
Yang CH  Chang HW  Ho CH  Chou YC  Chuang LY 《PloS one》2011,6(3):e17729

Background

Complete mitochondrial (mt) genome sequencing is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. For long template sequencing, i.e., like the entire mtDNA, it is essential to design primers for Polymerase Chain Reaction (PCR) amplicons which are partly overlapping each other. The presented chromosome walking strategy provides the overlapping design to solve the problem for unreliable sequencing data at the 5′ end and provides the effective sequencing. However, current algorithms and tools are mostly focused on the primer design for a local region in the genomic sequence. Accordingly, it is still challenging to provide the primer sets for the entire mtDNA.

Methodology/Principal Findings

The purpose of this study is to develop an integrated primer design algorithm for entire mt genome in general, and for the common primer sets for closely-related species in particular. We introduce ClustalW to generate the multiple sequence alignment needed to find the conserved sequences in closely-related species. These conserved sequences are suitable for designing the common primers for the entire mtDNA. Using a heuristic algorithm particle swarm optimization (PSO), all the designed primers were computationally validated to fit the common primer design constraints, such as the melting temperature, primer length and GC content, PCR product length, secondary structure, specificity, and terminal limitation. The overlap requirement for PCR amplicons in the entire mtDNA is satisfied by defining the overlapping region with the sliding window technology. Finally, primer sets were designed within the overlapping region. The primer sets for the entire mtDNA sequences were successfully demonstrated in the example of two closely-related fish species. The pseudo code for the primer design algorithm is provided.

Conclusions/Significance

In conclusion, it can be said that our proposed sliding window-based PSO algorithm provides the necessary primer sets for the entire mt genome amplification and sequencing.  相似文献   

8.
Influenza A virus has eight‐segmented RNA molecules as a genome and, among all strains of the virus, both ends of each segment have 13 and 12 nucleotide sequences conserved. In the present study, a simple RT‐PCR method to amplify all eight segments of the virus and determine the HA and NA subtype using a single primer set based on the conserved terminal sequences has been established. This method is also capable of detecting subgenomic defective interfering RNA of the influenza A virus. Since the primers used here cope with each and every RNA segment of influenza A virus, this simple RT‐PCR method is valuable not only for cloning each gene of the virus, but also for identifying subtypes, including subtypes other than 16 HA and 9 NA subtypes.  相似文献   

9.
The influenza A(H3N2) virus has circulated worldwide for almost five decades and is the dominant subtype in most seasonal influenza epidemics, as occurred in the 2014 season in South America. In this study we evaluate five whole genome sequences of influenza A(H3N2) viruses detected in patients with mild illness collected from January-March 2014. To sequence the genomes, a new generation sequencing (NGS) protocol was performed using the Ion Torrent PGM platform. In addition to analysing the common genes, haemagglutinin, neuraminidase and matrix, our work also comprised internal genes. This was the first report of a whole genome analysis with Brazilian influenza A(H3N2) samples. Considerable amino acid variability was encountered in all gene segments, demonstrating the importance of studying the internal genes. NGS of whole genomes in this study will facilitate deeper virus characterisation, contributing to the improvement of influenza strain surveillance in Brazil.  相似文献   

10.
We designed five degenerate primers for detection of novel cry genes from Bacillus thuringiensis strains. An efficient strategy was developed based on a two-step PCR approach with these primers in five pair combinations. In the first step, only one of the primer pairs is used in the PCR, which allows amplification of DNA fragments encoding protein regions that include consensus domains of representative proteins belonging to different Cry groups. A second PCR is performed by using the first-step amplification products as DNA templates and the set of five primer combinations. Cloning and sequencing of the last-step amplicons allow both the identification of known cry genes encoding Cry proteins covering a wide phylogenetic distance and the detection and characterization of cry-related sequences from novel B. thuringiensis isolates.  相似文献   

11.
Hepatitis C virus (HCV) is a positive-strand RNA virus related to pestiviruses and flaviviruses. The 5' noncoding region (NCR) of the virus genome consists of 324-341 nucleotides and is generally highly conserved among different HCV isolates which has made this region the choice for primer selection in amplification of HCV sequences by polymerase chain reaction (PCR). In this study, we report the partial nucleotide sequences of the 5'-NCR from type 1a (n = 4), type 1b (n = 6) and type 4 (n = 1) Turkish HCV isolates. Sequence information was obtained by direct sequencing of RT-PCR product using biotinylated primers and single strands were sequenced using T7 DNA polymerase after binding to streptavidin coated magnetic beads. In comparison to prototype type 1a consensus sequence, all type 1b sequences had A-G substitution at position - 99. Nucleotid changes from the prototype 1a sequence were found in 12 of the 174 nucleotide positions. The most variable domain spans 51 nucleotides (positions - 167 to - 117) where nine polymorphic sites were identified. Although the nucleotide sequence of the 5'-noncoding region is highly conserved there are type-specific polymorphic sites within this region that has to be taken into consideration in the design of oligonucleotide primers for reliable amplification of sequences from different HCV genotypes.  相似文献   

12.
为明确广东地区分离的一株禽流感病毒H5N1的遗传背景,建立流感病毒反向遗传的平台。对该株禽流感病毒进行了空斑纯化与组织细胞培养,检测其在MDCK细胞中的增殖特性;利用H5N1病毒通用引物,通过RT-PCR对该病毒全基因组的8条片段进行全长克隆及测序分析;将H5N1的8条全长基因组片段分别插入反向遗传通用载体中,构建禽流感病毒H5N1的感染性克隆。结果表明,该H5N1毒株在MDCK细胞中可不依赖胰酶进行有效增殖与复制,可使MDCK细胞出现典型细胞病变,具有高致病性禽流感病毒的细胞增殖特征。RT-PCR克隆得到该H5N1毒株的PB2、PB1、PA、HA、NP、NA、M和NS八条全长片段,经测序分析确认该毒株的基因序列,其内部编码序列出现多处突变,其中HA连接肽为多个连续碱性氨基酸,表明该毒株可不依赖胰酶进行有效复制,与细胞培养结果一致,未出现抗药性的遗传突变。PCR与测序证明,插入H5N1八个全长基因组片段的载体序列完全正确,表明成功构建了该毒株的感染性克隆。为明确病毒遗传信息,建立流感病毒反向遗传的平台,为进一步研究禽流感病毒相关疫苗提供了研究基础。  相似文献   

13.
14.
We describe a technique, sequence-tagged microsatellite profiling (STMP), to rapidly generate large numbers of simple sequence repeat (SSR) markers from genomic or cDNA. This technique eliminates the need for library screening to identify SSR-containing clones and provides an ~25-fold increase in sequencing throughput compared to traditional methods. STMP generates short but characteristic nucleotide sequence tags for fragments that are present within a pool of SSR amplicons. These tags are then ligated together to form concatemers for cloning and sequencing. The analysis of thousands of tags gives rise to a representational profile of the abundance and frequency of SSRs within the DNA pool, from which low copy sequences can be identified. As each tag contains sufficient nucleotide sequence for primer design, their conversion into PCR primers allows the amplification of corresponding full-length fragments from the pool of SSR amplicons. These fragments permit the full characterisation of a SSR locus and provide flanking sequence for the development of a microsatellite marker. Alternatively, sequence tag primers can be used to directly amplify corresponding SSR loci from genomic DNA, thereby reducing the cost of developing a microsatellite marker to the synthesis of just one sequence-specific primer. We demonstrate the utility of STMP by the development of SSR markers in bread wheat.  相似文献   

15.
We describe a technique, sequence-tagged microsatellite profiling (STMP), to rapidly generate large numbers of simple sequence repeat (SSR) markers from genomic or cDNA. This technique eliminates the need for library screening to identify SSR-containing clones and provides an approximately 25-fold increase in sequencing throughput compared to traditional methods. STMP generates short but characteristic nucleotide sequence tags for fragments that are present within a pool of SSR amplicons. These tags are then ligated together to form concatemers for cloning and sequencing. The analysis of thousands of tags gives rise to a representational profile of the abundance and frequency of SSRs within the DNA pool, from which low copy sequences can be identified. As each tag contains sufficient nucleotide sequence for primer design, their conversion into PCR primers allows the amplification of corresponding full-length fragments from the pool of SSR amplicons. These fragments permit the full characterisation of a SSR locus and provide flanking sequence for the development of a microsatellite marker. Alternatively, sequence tag primers can be used to directly amplify corresponding SSR loci from genomic DNA, thereby reducing the cost of developing a microsatellite marker to the synthesis of just one sequence-specific primer. We demonstrate the utility of STMP by the development of SSR markers in bread wheat.  相似文献   

16.
New applications of DNA and RNA sequencing are expanding the field of biodiversity discovery and ecological monitoring, yet questions remain regarding precision and efficiency. Due to primer bias, the ability of metabarcoding to accurately depict biomass of different taxa from bulk communities remains unclear, while PCR‐free whole mitochondrial genome (mitogenome) sequencing may provide a more reliable alternative. Here, we used a set of documented mock communities comprising 13 species of freshwater macroinvertebrates of estimated individual biomass, to compare the detection efficiency of COI metabarcoding (three different amplicons) and shotgun mitogenome sequencing. Additionally, we used individual COI barcoding and de novo mitochondrial genome sequencing, to provide reference sequences for OTU assignment and metagenome mapping (mitogenome skimming), respectively. We found that, even though both methods occasionally failed to recover very low abundance species, metabarcoding was less consistent, by failing to recover some species with higher abundances, probably due to primer bias. Shotgun sequencing results provided highly significant correlations between read number and biomass in all but one species. Conversely, the read–biomass relationships obtained from metabarcoding varied across amplicons. Specifically, we found significant relationships for eight of 13 (amplicons B1FR‐450 bp, FF130R‐130 bp) or four of 13 (amplicon FFFR, 658 bp) species. Combining the results of all three COI amplicons (multiamplicon approach) improved the read–biomass correlations for some of the species. Overall, mitogenomic sequencing yielded more informative predictions of biomass content from bulk macroinvertebrate communities than metabarcoding. However, for large‐scale ecological studies, metabarcoding currently remains the most commonly used approach for diversity assessment.  相似文献   

17.
18.
快速获取55型腺病毒基因组序列的方法   总被引:1,自引:0,他引:1  
【目的】建立快速获取55型腺病毒的全长基因组序列的方法。【方法】根据55型腺病毒的基因组特点,设计覆盖55型腺病毒基因组序列的12对引物,分别以55型腺病毒DNA为模板,扩增得到12个PCR产物,通过对12个PCR产物测序及序列拼接,获得55型腺病毒的全长基因组序列。【结果】从本院急性上呼吸道感染者咽拭子标本中分离得到一株55型腺病毒毒株SF04/SC/2016,以其DNA为模板扩增成功获得12个PCR产物,对其进行测序,并对12段序列进行拼接得到55型腺病毒的全长基因组序列,与已报到的各型腺病毒序列进行比对,采用邻位相连法构建系统发育进化树,所得序列与55型腺病毒处于同一分支,进一步确认该病原体为55型腺病毒。【结论】研究公布的序列和方法,能够实现更方便对腺病毒的快速测序,为揭示55型腺病毒的进化特点及制订疾病防控策略提供了有效手段。  相似文献   

19.
Rice dwarf virus (RDV) was isolated and purified from infected rice leaves with chloro form extraction, PEG precipitation and sucrose gradient centrifugation. Total RDV RNA ge nome was separated in the agarose gel and segments of RDV RNA genome were purified. The cDNAs of several segments were synthesized with oligo dT as primer. Through cDNA mapping, subcloning and sequencing, we have obtained partial DNA sequence of those segments. Here we report the cloning and partial DNA sequence of segment 8 from RDV RNA genome.  相似文献   

20.
Influenza B virus remains a major contributor to the seasonal influenza outbreak and its prevalence has increased worldwide. We investigated the epidemiology and analyzed the full genome sequences of influenza B virus strains in Thailand between 2010 and 2014. Samples from the upper respiratory tract were collected from patients diagnosed with influenza like-illness. All samples were screened for influenza A/B viruses by one-step multiplex real-time RT-PCR. The whole genome of 53 influenza B isolates were amplified, sequenced, and analyzed. From 14,418 respiratory samples collected during 2010 to 2014, a total of 3,050 tested positive for influenza virus. Approximately 3.27% (471/14,418) were influenza B virus samples. Fifty three isolates of influenza B virus were randomly chosen for detailed whole genome analysis. Phylogenetic analysis of the HA gene showed clusters in Victoria clades 1A, 1B, 3, 5 and Yamagata clades 2 and 3. Both B/Victoria and B/Yamagata lineages were found to co-circulate during this time. The NA sequences of all isolates belonged to lineage II and consisted of viruses from both HA Victoria and Yamagata lineages, reflecting possible reassortment of the HA and NA genes. No significant changes were seen in the NA protein. The phylogenetic trees generated through the analysis of the PB1 and PB2 genes closely resembled that of the HA gene, while trees generated from the analysis of the PA, NP, and M genes showed similar topology. The NS gene exhibited the pattern of genetic reassortment distinct from those of the PA, NP or M genes. Thus, antigenic drift and genetic reassortment among the influenza B virus strains were observed in the isolates examined. Our findings indicate that the co-circulation of two distinct lineages of influenza B viruses and the limitation of cross-protection of the current vaccine formulation provide support for quadrivalent influenza vaccine in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号