首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human deubiquitinase USP1 plays important roles in cancer-related processes, such as the DNA damage response, and the maintenance of the undifferentiated state of osteosarcoma cells. USP1 deubiquitinase activity is critically regulated by its interaction with the WD40 repeat-containing protein UAF1. Inhibiting the function of the USP1/UAF1 complex sensitizes cancer cells to chemotherapy, suggesting that this complex is a relevant anticancer target. Intriguingly, whereas UAF1 has been reported to locate in the cytoplasm, USP1 is a nuclear protein, although the sequence motifs that mediate its nuclear import have not been functionally characterized. Here, we identify two nuclear localization signals (NLSs) in USP1 and show that these NLSs mediate the nuclear import of the USP1/UAF1 complex. Using a cellular relocation assay based on these results, we map the UAF1-binding site to a highly conserved 100 amino acid motif in USP1. Our data support a model in which USP1 and UAF1 form a complex in the cytoplasm that subsequently translocates to the nucleus through import mediated by USP1 NLSs. Importantly, our findings have practical implications for the development of USP1-directed therapies. First, the UAF1-interacting region of USP1 identified here might be targeted to disrupt the USP1/UAF1 interaction with therapeutic purposes. On the other hand, we describe a cellular relocation assay that can be easily implemented in a high throughput setting to search for drugs that may dissociate the USP1/UAF1 complex.  相似文献   

3.
4.
Replication of HIV-1 in non-dividing and slowly proliferating cell populations depends on active import of the viral pre-integration complex (PIC) into the cell nucleus. While it is commonly accepted that this process is mediated by an interaction between the HIV-1 PIC and the cellular nuclear import machinery, controversial results have been reported concerning the mechanisms of this interaction. Here, we demonstrate that a recently identified nuclear localization signal within the HIV-1 matrix protein (MA), MA NLS-2, together with previously described MA NLS-1, mediates nuclear import of the HIV-1 PIC. Inactivation of both MA NLSs precluded nuclear translocation of MA and rendered the virus defective in nuclear import and replication in non-dividing macrophage cultures, even when functional Vpr and integrase (IN), two more viral proteins implicated in HIV-1 nuclear import, were present. Taken together, these results indicate that Vpr does not function as an independent nuclear import factor and demonstrate that HIV-1 MA, by virtue of its two nuclear localization signals, regulates HIV-1 nuclear import.  相似文献   

5.
6.
Activity of Ho, the yeast mating switch endonuclease, is restricted to a narrow time window of the cell cycle. Ho is unstable and despite being a nuclear protein is exported to the cytoplasm for proteasomal degradation. We report here the molecular basis for the highly efficient nuclear import of Ho and the relation between its short half-life and passage through the nucleus. The Ho nuclear import machinery is functionally redundant, being based on two bipartite nuclear localization signals, recognized by four importins of the ribosomal import system. Ho degradation is regulated by the DNA damage response and Ho retained in the cytoplasm is stabilized, implying that Ho acquires its crucial degradation signals in the nucleus. Ho arose by domestication of a fungal VMA1 intein. A comparison of the primary sequences of Ho and fungal VMA1 inteins shows that the Ho nuclear localization signals are highly conserved in all Ho proteins, but are absent from VMA1 inteins. Thus adoption of a highly efficient import strategy occurred very early in the evolution of Ho. This may have been a crucial factor in establishment of homothallism in yeast, and a key event in the rise of the Saccharomyces sensu stricto.  相似文献   

7.
Epidermal keratinocyte differentiation is accompanied by differential regulation of E2F genes, including up-regulation of E2F-5 and its concomitant association with the retinoblastoma family protein p130. This complex appears to play a role in irreversible withdrawal from the cell cycle in differentiating keratinocytes. We now report that keratinocyte differentiation is also accompanied by changes in E2F-5 subcellular localization, from the cytoplasm to the nucleus. To define the molecular determinants of E2F-5 nuclear import, we tested its ability to enter the nucleus in import assays in vitro using digitonin-permeabilized cells. We found that E2F-5 enters the nucleus through mediated transport processes that involve formation of nuclear pore complexes. It has been proposed that E2F-4 and E2F-5, which lack defined nuclear localization signal (NLS) consensus sequences, enter the nucleus in association with NLS-containing DP-2 or pRB family proteins. However, we show that nuclear import of E2F-5 only requires the first N-terminal 56 amino acid residues and is not dependent on interaction with DP or pRB family proteins. Because E2F-5 is predominantly cytoplasmic in undifferentiated keratinocytes and in other intact cells, we also examined whether this protein is subjected to active nuclear export. Indeed, E2F-5 is exported from the nucleus through leptomycin B-sensitive, CRM1-mediated transport, through a region corresponding to amino acid residues 130-154. This region excludes the DNA- and the p130-binding domains. Thus, the subcellular distribution of E2F-5 is tightly regulated in intact cells, through multiple functional domains that direct nucleocytoplasmic shuttling of this protein.  相似文献   

8.
9.
Cellular uptake and nuclear localization are two major barriers in gene delivery. In order to evaluate whether additional nuclear localization signals (NLSs) can improve gene transfection efficiency, we introduced different kinds of NLSs to TAT-based gene delivery systems to form three kinds of complexes, including TAT-PV/DNA, TAT/DNA/PV, and TAT/DNA/HMGB1. The DNA binding ability of different vectors was evaluated by agarose gel electrophoresis. The in vitro transfections mediated by different complexes under different conditions were carried out. The cells treated by different complexes were observed by confocal microscopy. The MTT assay showed that all complexes did not exhibit apparent cytotoxicity in both HeLa and Cos7 cell lines even at high N/P ratios. The luciferase reporter gene expression mediated by TAT-PV/DNA complexes exhibited about 200-fold enhancement as compared with TAT/DNA complexes. Confocal study showed that, except TAT/DNA/PV, all other complexes exhibited enhanced nuclear accumulation and cellular uptake in both HeLa and Cos7 cell lines. These results indicated that the introduction of nuclear localization signals could enhance the transfection efficacy of TAT-based peptides, implying that the TAT peptide-based vectors demonstrated here have promising potential in gene delivery.  相似文献   

10.
Liquid-liquid phase separation (LLPS) can drive formation of diverse and essential macromolecular structures, including those specified by viruses. Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) genomes associate with the viral encoded Latency-Associated Nuclear Antigen (LANA) to form stable nuclear bodies (NBs) during latent infection. Here, we show that LANA-NB formation and KSHV genome conformation involves LLPS. Using LLPS disrupting solvents, we show that LANA-NBs are partially disrupted, while DAXX and PML foci are highly resistant. LLPS disruption altered the LANA-dependent KSHV chromosome conformation but did not stimulate lytic reactivation. We found that LANA-NBs undergo major morphological transformation during KSHV lytic reactivation to form LANA-associated replication compartments encompassing KSHV DNA. DAXX colocalizes with the LANA-NBs during latency but is evicted from the LANA-associated lytic replication compartments. These findings indicate the LANA-NBs are dynamic super-molecular nuclear structures that partly depend on LLPS and undergo morphological transitions corresponding to the different modes of viral replication.  相似文献   

11.
12.
The Ets factor Friend leukemia integration 1 (Fli-1) is an important regulator of megakaryocytic (Mk) differentiation. Here, we demonstrate two novel nuclear localization signals (NLSs) within Fli-1: one (NLS1) is located at the N terminus, and another (NLS2) is within the Ets domain. Nuclear accumulation of Fli-1 reflected the combined functional effects of the two discrete NLSs. Each NLS can independently direct nuclear transport of a carrier protein, with mutations within the NLSs affecting nuclear accumulation. NLS1 has a bipartite motif, whereas the NLS2 region contains a nonclassical NLS. Both NLSs bind importin alpha (IMPalpha) and IMPbeta, with NLS1 and NLS2 being predominantly recognized by IMPalpha and IMPbeta, respectively. Fli-1 also contains one nuclear export signal. Leptomycin B abolished its cytoplasmic accumulation, showing CRM1 dependency. We demonstrate that Ets domain binding to specific target DNA effectively blocks IMP binding, indicating that the targeted DNA binding plays a role in localizing Fli-1 to its destination and releasing IMPs for recycling back to the cytoplasm. Finally, by analyzing full-length Fli-1 carrying NLS1, NLS2, and combined NLS1-NLS2 mutations, we conclude that two functional NLSs exist in Fli-1 and that each NLS is sufficient to target Fli-1 to the nucleus for activation of Mk-specific genes.  相似文献   

13.
14.
Nuclear import involves the recognition by importin (IMP) superfamily members of nuclear localization signals (NLSs) within protein cargoes destined for the nucleus, the best understood being recognition of classical NLSs (cNLSs) by the IMPα/β1 heterodimer. Although the cNLS consensus [K-(K/R)-X-(K/R) for positions P2–P5] is generally accepted, recent studies indicated that the contribution made by different residues at the P4 position can vary. Here, we apply a combination of microscopy, molecular dynamics, crystallography, in vitro binding, and bioinformatics approaches to show that the nature of residues at P4 indeed modulates cNLS function in the context of a prototypical Simian Virus 40 large tumor antigen-derived cNLS (KKRK, P2–5). Indeed, all hydrophobic substitutions in place of R impaired binding to IMPα and nuclear targeting, with the largest effect exerted by a G residue at P4. Substitution of R with neutral hydrophobic residues caused the loss of electrostatic and van der Waals interactions between the P4 residue side chains and IMPα. Detailed bioinformatics analysis confirmed the importance of the P4 residue for cNLS function across the human proteome, with specific residues such as G being associated with low activity. Furthermore, we validate our findings for two additional cNLSs from human cytomegalovirus (HCMV) DNA polymerase catalytic subunit UL54 and processivity factor UL44, where a G residue at P4 results in a 2–3-fold decrease in NLS activity. Our results thus showed that the P4 residue makes a hitherto poorly appreciated contribution to nuclear import efficiency, which is essential to determining the precise nuclear levels of cargoes.  相似文献   

15.
The nuclear import of proteins typically requires the presence of a nuclear localization sequence (NLS). Some proteins have more than one NLS, but the significance of having multiple NLSs is unclear. The enzyme 5-lipoxygenase (5-LO) has three NLSs that, unlike the tight cluster of basic residues of the classical SV40 large T antigen NLS, contain dispersed basic residues. When attached to green fluorescent protein (GFP), individual 5-LO NLSs caused quantitatively and statistically less import than the SV40 NLS. Combined 5-LO NLSs produced nuclear import that was comparable to that of the SV40 NLS. As expected, GFP/NLS proteins displayed relatively uniform import in all cells. However, a fusion protein of GFP plus the 5-LO protein, modified to contain only one functional NLS, produced some cells with import and some cells without import. A GFP/5-LO fusion protein containing two functional NLSs produced four identifiable levels of nuclear import. Quantitative and visual analysis of a population of cells expressing the intact GFP/5-LO protein, with three intact NLSs, indicated five levels of nuclear import. This suggested that the subcellular distribution of 5-LO may vary widely in normal cells of the body. Consistent with this, immunohistochemical staining of lung sections found that individual macrophages, in situ, displayed cell-specific levels of import of 5-LO. Since nuclear accumulation is known to affect 5-LO activity, multiple NLSs may allow graded regulation of activity via controlled import. Multiple NLSs on other proteins may likewise allow fine control of protein action through modulation of the level of import.  相似文献   

16.
17.
Nuclear protein import proceeds through the nuclear pore complex (NPC). Importin-beta mediates translocation via direct interaction with NPC components and carries importin-alpha with the NLS substrate from the cytoplasm into the nucleus. The import reaction is terminated by the direct binding of nuclear RanGTP to importin-beta which dissociates the importin heterodimer. Here, we analyse the sites of interaction on importin-beta for its multiple partners. Ran and importin-alpha respectively require residues 1-364 and 331-876 of importin-beta for binding. Thus, RanGTP-mediated release of importin-alpha from importin-beta is likely to be an active displacement rather than due to simple competition between Ran and importin-alpha for a common binding site. Importin-beta has at least two non-overlapping sites of interaction with the NPC, which could potentially be used sequentially during translocation. Our data also suggest that termination of import involves a transient release of importin-beta from the NPC. Importin-beta fragments which bind to the NPC, but not to Ran, resist this release mechanism. As would be predicted from this, these importin-beta mutants are very efficient inhibitors of NLS-dependent protein import. Surprisingly, however, they also inhibit M9 signal-mediated nuclear import as well as nuclear export of mRNA, U snRNA, and the NES-containing Rev protein. This suggests that mediators of these various transport events share binding sites on the NPC and/or that mechanisms exist to coordinate translocation through the NPC via different nucleocytoplasmic transport pathways.  相似文献   

18.
Nucleocytoplasmic trafficking of histone deacetylase 4 (HDAC4) plays an important role in regulating its function, and binding of 14-3-3 proteins is necessary for its cytoplasmic retention. Here, we report the identification of nuclear import and export sequences of HDAC4. While its N-terminal 118 residues modulate the nuclear localization, residues 244 to 279 constitute an authentic, strong nuclear localization signal. Mutational analysis of this signal revealed that three arginine-lysine clusters are necessary for its nuclear import activity. As for nuclear export, leucine-rich sequences located in the middle part of HDAC4 do not function as nuclear export signals. By contrast, a hydrophobic motif (MXXLXVXV) located at the C-terminal end serves as a nuclear export signal that is necessary for cytoplasmic retention of HDAC4. This motif is required for CRM1-mediated nuclear export of HDAC4. Furthermore, binding of 14-3-3 proteins promotes cytoplasmic localization of HDAC4 by both inhibiting its nuclear import and stimulating its nuclear export. Unlike wild-type HDAC4, a point mutant with abrogated MEF2-binding ability remains cytoplasmic upon exogenous expression of MEF2C, supporting the notion that direct MEF2 binding targets HDAC4 to the nucleus. Therefore, HDAC4 possesses intrinsic nuclear import and export signals for its dynamic nucleocytoplasmic shuttling, and association with 14-3-3 and MEF2 proteins affects such shuttling and thus directs HDAC4 to the cytoplasm and the nucleus, respectively.  相似文献   

19.
Multiple pathways contribute to nuclear import of core histones   总被引:2,自引:0,他引:2       下载免费PDF全文
Nuclear import of the four core histones H2A, H2B, H3 and H4 is one of the main nuclear import activities during S-phase of the cell cycle. However, the molecular machinery facilitating nuclear import of core histones has not been elucidated. Here, we investigated the pathways by which histone import can occur. First, we show that core histone import can be competed by the BIB (β-like import receptor binding) domain of ribosomal protein L23a suggesting that histone import is an importin mediated process. Secondly, affinity chromatography on immobilized core histones revealed that several members of the importin β family of transport receptors are able to interact with core histones. Finally, we demonstrate that at least four known and one novel importin, importin 9, can mediate nuclear import of core histones into the nuclei of permeabilized cells. Our results suggest that multiple pathways of import exist to provide efficient nuclear uptake of these abundant, essential proteins.  相似文献   

20.
NLSdb is a database of nuclear localization signals (NLSs) and of nuclear proteins. NLSs are short stretches of residues mediating transport of nuclear proteins into the nucleus. The database contains 114 experimentally determined NLSs that were obtained through an extensive literature search. Using 'in silico mutagenesis' this set was extended to 308 experimental and potential NLSs. This final set matched over 43% of all known nuclear proteins and matches no currently known non-nuclear protein. NLSdb contains over 6000 predicted nuclear proteins and their targeting signals from the PDB and SWISS-PROT/TrEMBL databases. The database also contains over 12 500 predicted nuclear proteins from six entirely sequenced eukaryotic proteomes (Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae). NLS motifs often co-localize with DNA-binding regions. This observation was used to also annotate over 1500 DNA-binding proteins. NLSdb can be accessed via the web site: http://cubic.bioc.columbia.edu/db/NLSdb/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号