首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
INTRODUCTION/OBJECTIVES: Cell cycle progression is driven by the coordinated regulation of cyclin-dependent kinases (CDKs). In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G(1) phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. METHODS AND RESULTS: In this study, we have explored the role of CDK4 activity during G(1) progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. CONCLUSIONS: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G(1) phase.  相似文献   

7.
8.
9.
Protein kinases are critical to cellular signalling and post-translational gene regulation, but their biological substrates are difficult to identify. We show that cyclin-dependent kinase (CDK) consensus motifs are frequently clustered in CDK substrate proteins. Based on this, we introduce a new computational strategy to predict the targets of CDKs and use it to identify new biologically interesting candidates. Our data suggest that regulatory modules may exist in protein sequence as clusters of short sequence motifs.  相似文献   

10.
Negative regulation of cell-cycle progression by RINGO/Speedy E   总被引:1,自引:0,他引:1  
Cell-cycle transitions are controlled by CDKs (cyclin-dependent kinases), whose activation is usually associated with the binding of cyclins. RINGO/Speedy proteins can also bind to and activate CDKs, although they do not have amino acid sequence homology with cyclins. The RINGO/Speedy family members studied so far positively regulate cell-cycle progression. In the present paper, we report the biochemical and functional characterization of RINGO/Speedy E. We show that RINGO/Speedy E is a functionally distant member of this protein family that negatively affects cell-cycle progression. RINGO/Speedy E overexpression inhibits the meiotic progression in Xenopus oocytes as well as the proliferation of mammalian cells. RINGO/Speedy E can bind to endogenous CDK1 and CDK2 in both cellular systems. However, the RINGO/Speedy E-activated CDKs have different substrate specificity than the CDKs activated by other RINGO/Speedy proteins, which may account for their different effects on the cell cycle. Our results indicate that, although all RINGO/Speedy family members can activate CDKs, they may differently regulate cell-cycle progression.  相似文献   

11.
12.
Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.  相似文献   

13.
14.
15.
16.
Dysregulation of cyclin-dependent kinases (CDKs) can promote unchecked cell proliferation and cancer progression. Although focal adhesion kinase (FAK) contributes to regulating cell cycle progression, the exact molecular mechanism remains unclear. Here, we found that FAK plays a key role in cell cycle progression potentially through regulation of CDK4/6 protein expression. We show that FAK inhibition increased its nuclear localization and induced G1 arrest in B16F10 melanoma cells. Mechanistically, we demonstrate nuclear FAK associated with CDK4/6 and promoted their ubiquitination and proteasomal degradation through recruitment of CDC homolog 1 (CDH1), an activator and substrate recognition subunit of the anaphase-promoting complex/cyclosome E3 ligase complex. We found the FAK N-terminal FERM domain acts as a scaffold to bring CDK4/6 and CDH1 within close proximity. However, overexpression of nonnuclear-localizing mutant FAK FERM failed to function as a scaffold for CDK4/6 and CDH1. Furthermore, shRNA knockdown of CDH1 increased CDK4/6 protein expression and blocked FAK inhibitor–induced reduction of CDK4/6 in B16F10 cells. In vivo, we show that pharmacological FAK inhibition reduced B16F10 tumor size, correlating with increased FAK nuclear localization and decreased CDK4/6 expression compared with vehicle controls. In patient-matched healthy skin and melanoma biopsies, we found FAK was mostly inactive and nuclear localized in healthy skin, whereas melanoma lesions showed increased active cytoplasmic FAK and elevated CDK4 expression. Taken together, our data demonstrate that FAK inhibition blocks tumor proliferation by inducing G1 arrest, in part through decreased CDK4/6 protein stability by nuclear FAK.  相似文献   

17.
18.
19.
Cyclin-dependent kinases (CDKs) are a family of enzymes essential for the progression of the cells through the cell cycle in eukaryotes. Moreover, genetic stability-maintaining processes, such as check-point control and DNA repair, require the phosphorylation of a wide variety of target substrates by CDK. In budding yeast Saccharomyces cerevisiae, the key role in the cell cycle progression is played by CDK1/CDC28 kinase. This enzyme is the most thoroughly investigated. In this review the involvement of CDC28 kinase in regulation of the cell cycle is discussed in the light of newly obtained data.  相似文献   

20.
Four unresolved issues of cyclin-dependent kinase (CDK) regulation have been addressed by structural studies this year - the mechanism of CDK inhibition by members of the INK4 family of CDK inhibitors, consensus substrate sequence recognition by CDKs, the role of the cyclin subunit in substrate recognition and the structural mechanism underlying CDK inhibition by phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号