首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandins are a class of molecules that mediate cellular inflammatory responses and control cell growth. The oxidative conversion of arachidonic acid to prostaglandin H2 is carried out by two isozymes of cyclooxygenase, COX-1 and COX-2. COX-1 is constitutively expressed, while COX-2 can be transiently induced by external stimuli, such as pro-inflammatory cytokines. Interestingly, COX-2 is overexpressed in numerous cancers, including lung cancer. MicroRNAs (miRNAs) are small RNA molecules that function to regulate gene expression. Previous studies have implicated an important role for miRNAs in human cancer. We demonstrate here that miR-146a expression levels are significantly lower in lung cancer cells as compared with normal lung cells. Conversely, lung cancer cells have higher levels of COX-2 protein and mRNA expression. Introduction of miR-146a can specifically ablate COX-2 protein and the biological activity of COX-2 as measured by prostaglandin production. The regulation of COX-2 by miR-146a is mediated through a single miRNA-binding site present in the 3′ UTR. Therefore, we propose that decreased miR-146a expression contributes to the up-regulation and overexpression of COX-2 in lung cancer cells. Since potential miRNA-mediated regulation is a functional consequence of alternative polyadenylation site choice, understanding the molecular mechanisms that regulate COX-2 mRNA alternative polyadenylation and miRNA targeting will give us key insights into how COX-2 expression is involved in the development of a metastatic condition.  相似文献   

2.
3.
Small non-coding RNAs, microRNAs (miRNA), inhibit the translation or accelerate the degradation of message RNA (mRNA) by targeting the 3′-untranslated region (3′-UTR) in regulating growth and survival through gene suppression. Deregulated miRNA expression contributes to disease progression in several cancers types, including pancreatic cancers (PaCa). PaCa tissues and cells exhibit decreased miRNA, elevated cyclooxygenase (COX)-2 and increased prostaglandin E2 (PGE2) resulting in increased cancer growth and metastases. Human PaCa cell lines were used to demonstrate that restoration of miRNA-143 (miR-143) regulates COX-2 and inhibits cell proliferation. miR-143 were detected at fold levels of 0.41 ± 0.06 in AsPC-1, 0.20 ± 0.05 in Capan-2 and 0.10 ± 0.02 in MIA PaCa-2. miR-143 was not detected in BxPC-3, HPAF-II and Panc-1 which correlated with elevated mitogen-activated kinase (MAPK) and MAPK kinase (MEK) activation. Treatment with 10 μM of MEK inhibitor U0126 or PD98059 increased miR-143, respectively, by 187 ± 18 and 152 ± 26-fold in BxPC-3 and 182 ± 7 and 136 ± 9-fold in HPAF-II. miR-143 transfection diminished COX-2 mRNA stability at 60 min by 2.6 ± 0.3-fold in BxPC-3 and 2.5 ± 0.2-fold in HPAF-II. COX-2 expression and cellular proliferation in BxPC-3 and HPAF-II inversely correlated with increasing miR-143. PGE2 levels decreased by 39.3 ± 5.0% in BxPC-3 and 48.0 ± 3.0% in HPAF-II transfected with miR-143. Restoration of miR-143 in PaCa cells suppressed of COX-2, PGE2, cellular proliferation and MEK/MAPK activation, implicating this pathway in regulating miR-143 expression.  相似文献   

4.
Polymorphonuclear leukocytes (PMNs) play an important role during inflammation in cardiovascular diseases. Human neutrophil peptides (HNPs) are released from PMN granules upon activation and are conventionally involved in microbial killing. Recent studies suggested that HNPs may be involved in the pathogenesis of vascular abnormality by modulating inflammatory responses and vascular tone. Since HNPs directly interact with endothelium upon release from PMNs in the circulation, we tested the hypothesis that the stimulation with HNPs of endothelial cells modulates the expression of vasoactive by-products through altering cyclooxygenase (COX) activity. When human umbilical vein endothelial cells were stimulated with purified HNPs, we observed a time- and dose-dependent increase in the expression of COX-2, whereas COX-1 levels remained unchanged. Despite an increased expression of COX-2 at the protein level, HNPs did not significantly enhance the COX-2 activity, thus the production of the prostaglandin PGI2. HNPs significantly induced the release of endothelin-1 (ET-1) as well as the formation of nitrotyrosine. The HNP-induced COX-2 and ET-1 production was attenuated by the treatment with the oxygen free radical scavenger N-acetyl-L-cysteine and the inhibitors of p38 MAPK and NF-kappaB, respectively. The angiontensin II pathway did not seem to be involved in the HNP-induced upregulation of COX-2 and ET-1 since the use of the angiotensin-converting enzyme inhibitor enalapril had no effect in this context. In conclusion, HNP may play an important role in the pathogenesis of inflammatory cardiovascular diseases by activating endothelial cells to produce vasoactive by-products as a result of oxidative stress.  相似文献   

5.
Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.  相似文献   

6.
7.
VEGF-C、COX-2在乳腺癌中的表达及其临床意义   总被引:1,自引:0,他引:1  
目的:探讨血管内皮生长因子与环氧化酶-2在乳腺癌组织中的表达和临床意义.方法:应用免疫组织化学检测乳腺癌组织中血管内皮生长因子和环氧化酶-2的表达,分析两者的关系,并结舍临床资料进行相关性分析.结果:VEGF-C和COX-2在乳腺癌组织中的表达率分别为58.7%和56.5%,VEGF-C在乳腺癌中的表达与肿瘤大小、淋巴结转移相关(P<0.05),与年龄、雌、孕激素表达、Her-2情况及临床分期无相关性,COX-2蛋白的表达也与淋巴结转移有关(P<0.05),与年龄、肿瘤大小、雌、孕激素表达、Her-2情况及临床分期无明显相关性.乳腺癌组织COX-2蛋白的阳性表达与VEGF-C蛋白阳性表达之间存在显著的相关性(r=0.422,P<0.005)结论:COX-2和VEGF-C在乳腺癌组织中均呈较高袁达,乳腺癌组织中COX-2及VEGF-C的表达均与肿瘤的淋巴结转移情况相关.乳腺癌组织中COX-2的表达与VEGF-C的表达存在显著的相关性,提示在COX-2可能上调VEGF-C的水平,促进淋巴结转移.  相似文献   

8.
In prion diseases cellular prion protein (PrPC) undergoes conformational transition into the β-sheet-rich form (PrPSc). PrPC consists of the disordered N-terminal part and a C-terminal globular domain containing three α-helices (H1, H2, H3) and an antiparallel beta sheet (B1, B2). B2–H2 loop, which has a focal role in the species barrier, contains the highest density of asparagine (N) and glutamine (Q) residues in the whole sequence. Q/N-rich domains are essential for the conversion of yeast prions. We investigated the role of Q/N residues in the B2–H2 loop in PrP conversion. We prepared mouse PrP mutants with increasing number of consecutive Q/N residues in the B2–H2 loop. Stability of the mutants decreased with the increasing number of inserted glutamines. In vitro conversion of mutants yielded fibrils of similar morphology as the wild-type PrP. Q/N mutants accelerated fibrillization in comparison to the wild-type PrP, with mutant containing the most glutamines having the shortest lag phase. The effect of Q/N residues was specific for the B2–H2 loop and was not due to simple increase in flexibility as the introduction of Gly-Ser or Ala residues slowed the conversion despite their decreased stability. Our results thus suggest that Q/N residues in the B2–H2 loop of PrP promote protein conversion and may represent a link to conversion of Q/N-rich prions.  相似文献   

9.
Deficiency of Smad3, an intracellular mediator of TGF-β, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonic epithelial cell proliferation and crypt formation. Smad3ex8/ex8 C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3−/− mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3−/− mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear β-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3−/− mice in accordance with nuclear β-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3−/− mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system brings about mispositioning of proliferating cells in the colonic crypts of Smad3−/− mice. In conclusion, Smad3 is essential for controlling number and positioning of proliferating cells in the colonic crypts and contributes to formation of a “proliferative zone” at the bottom of colonic crypts in the normal colon.  相似文献   

10.
目的:观察选择性环氧化酶-2(COX-2)的抑制剂塞来昔布对表柔比星抗乳腺癌MCF-7细胞增殖和诱导凋亡作用以及探讨其机制.方法:应用四甲基偶氮唑蓝(MTT)比色法分析塞来昔布联用表柔比星对MCF-7细胞的生长抑制作用,流式细胞术检测细胞的凋亡,western blotting检测凋亡相关蛋白Bcl-2、Bax、caspase-3的表达.结果:10μmol/l的cxlecoxib和10μg/l表柔比星联用细胞抑制率和早期凋亡率均显著增高,并引起caspase-3上调及裂解激活,bcl-2下调,bax则变化不大.结论:塞来昔布对表柔比星抗乳腺癌MCF-7细胞有协同作用,其诱导凋亡与caspase-3激活和Bcl-2表达下调有关.  相似文献   

11.
曹威  李娟  程伟  江仁望 《广西植物》2014,(2):189-193
研究不同铁筷子提取物对肿瘤细胞增殖及 COX-2 mRNA 表达的抑制作用。以铁筷子醇总提取物(TKZ1)、正丁醇萃取部位(TKZ2)、乙酸乙酯萃取部位(TKZ3)分别作用于 DU145、PC3、HeLa、HT-29、HepG2等肿瘤细胞,应用噻唑蓝实验(MTT 法)计算其对细胞增殖的抑制作用,应用荧光定量 PCR 技术检测TKZ1、TKZ2、TKZ3处理后的各肿瘤细胞中 COX-2 mRNA 的表达情况。结果表明:TKZ1、TKZ2、TKZ3均能显著抑制多种肿瘤细胞的增殖,与阴性对照组比较,其可以在 mRNA 水平上抑制 COX-2的表达,且呈明显的量效关系。说明铁筷子提取物对体外肿瘤细胞的增殖具有显著的抑制作用,其抗瘤机制可能与抑制肿瘤细胞中 COX-2 mRNA 的表达有关。  相似文献   

12.
青藤碱抑制人宫颈癌的研究   总被引:2,自引:1,他引:2       下载免费PDF全文
目的:研究青藤碱(sinomenine,SIN)对宫颈癌Hela细胞增殖的影响及其机制,为SIN在宫颈癌的预防和治疗上提供实验依据。方法:不同浓度SIN分别处理体外培养的人宫颈癌细胞系Hela细胞后,采用噻唑蓝(Mar)法检测处理24h、48h、72h后Hela细胞的增殖活性,流式细胞仪测定细胞周期和细胞凋亡。结果:1.0.1、0.2、0.4、0.625、1.25、2.5mmml/L SIN处理Hela细胞24h、48h、72h后,细胞增殖明显受到抑制,呈时间和剂量依赖性特点;2.流式细胞仪细胞周期分析表明,SIN处理组G1期细胞比例明显增加,S期细胞比例明显减少,两组比较有统计学意义;3.细胞凋亡分析表明,SIN处理组细胞凋亡率较对照组升高,呈时间和剂量依赖性特点;结论:SIN在体外能有效抑制宫颈癌细胞生长,其机制可能与其阻滞细胞周期、诱导细胞凋亡有关,SIN有望应用于宫颈癌的辅助治疗。  相似文献   

13.
14.
Zhu Y  Zhu M  Lance P 《Experimental cell research》2012,318(16):2116-2127
COX-2 and iNOS are two major inflammatory mediators implicated in colorectal inflammation and cancer. Previously, the role of colorectal fibroblasts involved in regulation of COX-2 and iNOS expression was largely ignored. In addition, the combined interaction of COX-2 and iNOS signalings and their significance in the progression of colorectal inflammation and cancer within the fibroblasts have received little investigation. To address those issues, we investigated the role of colonic fibroblasts in the regulation of COX-2 and iNOS gene expression, and explored possible mechanisms of interaction between COX-2 and iNOS signalings using a colonic CCD-18Co fibroblast line and LPS, a potential stimulator of COX-2 and iNOS. Our results clearly demonstrated that LPS activated COX-2 gene expression and enhanced PGE(2) production, stimulated iNOS gene expression and promoted NO production in the fibroblasts. Interestingly, activation of COX-2 signaling by LPS was not involved in activation of iNOS signaling, while activation of iNOS signaling by LPS contributed in part to activation of COX-2 signaling. Further analysis indicated that PKC plays a major role in the activation and interaction of COX-2 and iNOS signalings induced by LPS in the fibroblasts.  相似文献   

15.
Induction of COX-2 expression by nitric oxide in rheumatoid synovial cells   总被引:4,自引:0,他引:4  
Prostaglandins formed by cyclooxygenase (COX) enzymes are important mediators of inflammation. The contribution of inducible COX-2 in the rheumatoid synovium is well documented. In this study, we evaluated the contribution of nitric oxide (NO) to COX-2 expression in rheumatoid synovial cells. Exposure of rheumatoid synovial cells to a NO donor, SNAP, induced COX-2 protein expression in a dose-dependent manner. RT-PCR analysis also demonstrated that COX-2 mRNA was induced in SNAP-treated synovial cells. Dexamethasone at therapeutic concentrations markedly inhibited this NO-mediated COX-2 expression in synovial cells. In contrast to its effect on COX-2 expression, SNAP did not affect the constitutive expression of COX-1 in rheumatoid synovial cells. Our findings suggest that NO is an important modulator of COX-2 expression and that glucocorticoids exert their anti-inflammatory action in rheumatoid synovium, at least in part, by suppression of COX-2 induction.  相似文献   

16.
Tetracyclines (doxycycline and minocycline) augmented (one- to twofold) the PGE2 production in human osteoarthritis-affected cartilage (in the presence or absence of cytokines and endotoxin) in ex vivo conditions. Similarly, bovine chondrocytes stimulated with LPS showed (one- to fivefold) an increase in PGE2 accumulation in the presence of doxycycline. This effect was observed at drug concentrations that did not affect nitric oxide (NO) production. In murine macrophages (RAW 264.7) stimulated with LPS, tetracyclines inhibited NO release and increased PGE2 production. Tetracycline(s) and L-N-monomethylarginine (L-NMMA) (NO synthase inhibitor) showed an additive effect on inhibition of NO and PGE2 accumulation, thereby uncoupling the effects of tetracyclines on NO and PGE2 production. The enhancement of PGE2 production in RAW 264.7 cells by tetracyclines was accompanied by the accumulation of both cyclooxygenase (COX)-2 mRNA and cytosolic COX-2 protein. In contrast to tetracyclines, L-NMMA at low concentrations (< or = 100 microM) inhibited the spontaneous release of No in osteoarthritis-affected explants and LPS-stimulated macrophages but had no significant effect on the PGE2 production. At higher concentrations, L-NMMA (500 microM) inhibited NO release but augmented PGE2 production. This study indicates a novel mechanism of action of tetracyclines to augment the expression of COX-2 and PGE2 production, an effect that is independent of endogenous concentration of NO.  相似文献   

17.
Little is known about the biological functions of the phospholipase A2 receptor (PLA2R1) except that it has the ability to bind a few secreted phospholipases A2 (sPLA2′s). We have previously shown that PLA2R1 regulates senescence in normal human cells. In this study, we investigated the ability of PLA2R1 to control cancer cell growth. Analysis of expression in cancer cells indicates a marked PLA2R1 decrease in breast cancer cell lines compared to normal or nontransformed human mammary epithelial cells. Accordingly, PLA2R1 ectopic expression in PLA2R1-negative breast cancer cell lines led to apoptosis, whereas a prosenescence response was predominantly triggered in normal cells. PLA2R1 structure–function studies and the use of chemical inhibitors of sPLA2-related signaling pathways suggest that the effect of PLA2R1 is sPLA2-independent. Functional experiments demonstrate that PLA2R1 regulation of cell death is driven by a reactive oxygen species (ROS)-dependent mechanism. While screening for ROS-producing complexes involved in PLA2R1 biological responses, we identified a critical role for the mitochondrial electron transport chain in PLA2R1-induced ROS production and cell death. Taken together, this set of data provides evidence for an important role of PLA2R1 in controlling cancer cell death by influencing mitochondrial biology.  相似文献   

18.
Evidence is accumulating that cyclooxygenase-2 (COX-2) may play an important role in prostate cancer (PCa). Recently, gene polymorphisms in COX-2 have been implicated to alter the risk of PCa and overexpression of COX-2 may be associated with clinical and prognostic significance in PCa. However, the results of these studies are inconclusive or controversial. To derive a more precise estimation of the relationships, we performed an updated meta-analysis. A comprehensive search was conducted to examine all the eligible studies of COX-2 polymorphism and expression in PCa. We used odds ratios (ORs) to assess the strength of the association and the 95?% confidence intervals (CIs) give a sense of the precision of the estimate. Overall, no significant associations between COX-2 polymorphism and PCa risk were found. However, high expression of COX-2 was significantly higher in T3–T4 stages of PCa than in T1–T2 stages of PCa (OR?=?2.33, 95?%CI: 1.54–3.53, P?<?0.0001). COX-2 might play an important role in the progress of PCa, overexpression of COX-2 correlates with T3–T4 stages of PCa. COX-2 might be a potential therapy target for PCa and work as a prognostic factor for PCa patients.  相似文献   

19.
The efficacy of immune surveillance and antigen-specific cancer immunotherapy equally depends on the activation of a sustained immune response targeting cancer antigens and the susceptibility of cancer cells to immune effector mechanisms. Using functional expression cloning and T-cell receptor (TCR) transgenic mice, we have identified cyclooxygenase 2/prostaglandin-endoperoxide synthase 2 (COX-2) as resistance factor against the cytotoxicity induced by activated, antigen-specific T cells. Expressing COX-2, but not a catalytically inactive COX-2 mutant, increased the clonogenic survival of E1A-transformed murine cancer cells when cocultured with lymphocytes from St42Rag2−/− mice harboring a transgenic TCR directed against an E1A epitope. COX-2 expressing tumors established in immune-deficient mice were less susceptible to adoptive immunotherapy with TCR transgenic lymphocytes in vivo. Also, immune surveillance of COX-2-positive tumor cells in TCR transgenic mice was less efficient. The growth of murine MC-GP tumors, which show high endogenous COX-2 expression, in immunocompetent mice was effectively suppressed by treatment with a selective COX-2 inhibitor, celecoxib. Mechanistically, COX-2 expression blunted the interferon-gamma release of antigen-specific T cells exposed to their respective cellular targets, and increased the expression of interleukin-4 and indoleamine 2,3-dioxygenase by tumor cells. Addition of interferon-gamma sensitized COX-2 expressing cancer cells to tumor suppression by antigen-specific T cells. In conclusion, COX-2, which is frequently induced in colorectal cancer, contributes to immune evasion and resistance to antigen-specific cancer immunotherapy by local suppression of T-cell effector functions.Anticancer immunity mediates immune surveillance and may be exploited for cancer immunotherapy. It involves innate immunity and natural killer cells, and antigen-specific immunity directed against cancer-specific antigens and viral antigens. Several escape mechanisms from cancer-specific immune surveillance and immunotherapy have been described. These comprise defective antigen processing and presentation by downmodulation of major histocompatibility complex (MHC) expression as well as immune editing of the antigen repertoire of a given cancer.1 Upregulated inhibitory ligands, such as PD-L1, and secreted factors like indoleamine 2,3-dioxygenase (IDO, encoded by IDO1) functionally suppress antigen-presenting cells and cytotoxic cellular immune effectors.2, 3 In addition, cell-autonomous mechanisms may decrease susceptibility of cancer to immune effector mechanisms. These involve granule-dependent cytotoxicity involving perforin and granzymes, death receptor-induced apoptosis, complement-dependent cytotoxicity and secreted factors such as interferons, all of which trigger specific intracellular death pathways.4, 5, 6, 7, 8 Accordingly, the success of immune prevention and immunotherapy relies on both, the activation of a potent immune response against cancer and its susceptibility to immune elimination.Clinically applied modalities of cancer immunotherapy include the adoptive transfer of cellular immune effectors by means of allogeneic stem cell transplantation and donor lymphocyte therapy, monoclonal antibodies with direct and indirect cytotoxic mechanisms, and active immunotherapy with cellular and acellular vaccines.9 Moreover, immune regulatory interventions using cytokines and, more recently, immune regulatory antibodies directed against CTLA-4, PD-1 and PD-L1 have been employed with varying success.10, 11 A detailed understanding of the activation and regulation of a cancer-specific immune reaction as well as the determinants of efficacy of the effector phase of immune elimination is crucial for successful implementation and improvement of such immunotherapies. To this end we have developed experimental systems for unbiased identification of cell-autonomous mechanisms that modulate the susceptibility of cancer to the cytotoxic effects of activated, antigen-specific T cells. We identify cyclooxygenase 2/prostaglandin-endoperoxide synthase 2 (COX-2), a pathogen-induced enzyme involved in prostaglandin synthesis, as mediator of resistance to the effector phase of antigen-specific cancer immunity. Deregulation of COX-2 has been implied in the pathogenesis of several cancers, in particular colorectal cancer, where it impacts on oncogenic signaling, invasion and metastasis, survival and angiogenesis.12, 13, 14, 15 Moreover, COX-2-dependent prostaglandin release can suppress antigen presentation and immune activation in cancer.16 Here we describe COX-2 as a suppressor of antigen-induced interferon-gamma secretion of T cells and inducer of immunosuppressive factors that contributes to escape from immune surveillance and resistance to cellular immunotherapy. COX-2 may serve as predictive biomarker and as therapeutic target for modulation of immune resistance in cancer.  相似文献   

20.
TNF and epidermal growth factor (EGF) are well-known stimuli of cyclooxygenase (COX)-2 expression, and TNF stimulates transactivation of EGF receptor (EGFR) signaling to promote survival in colon epithelial cells. We hypothesized that COX-2 induction and cell survival signaling downstream of TNF are mediated by EGFR transactivation. TNF treatment was more cytotoxic to COX-2(-/-) mouse colon epithelial (MCE) cells than wild-type (WT) young adult mouse colon (YAMC) epithelial cells or COX-1(-/-) cells. TNF also induced COX-2 protein and mRNA expression in YAMC cells, but blockade of EGFR kinase activity or expression inhibited COX-2 upregulation. TNF-induced COX-2 expression was reduced and absent in EGFR(-/-) and TNF receptor-1 (TNFR1) knockout MCE cells, respectively, but was restored upon expression of the WT receptors. Inhibition of mediators of EGFR transactivation, Src family kinases and p38 MAPK, blocked TNF-induced COX-2 protein and mRNA expression. Finally, TNF injection increased COX-2 expression in colon epithelium of WT, but not kinase-defective EGFR(wa2) and EGFR(wa5), mice. These data indicate that TNFR1-dependent transactivation of EGFR through a p38- and/or an Src-dependent mechanism stimulates COX-2 expression to promote cell survival. This highlights an EGFR-dependent cell signaling pathway and response that may be significant in colitis-associated carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号