首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA sequence specificity of mitomycin cross-linking   总被引:2,自引:0,他引:2  
Using a gel electrophoresis assay, we show that the target DNA sequence cross-linked by N-methylmitomycin A, its aziridinomitosene, and mitomycin C is CpG, in strong preference over GpC. The yield per CpG site increases as the number of successive CpG sequences increases. Molecular modeling reveals no systematic difference between the energies of mitomycin cross-links at CpG in comparison with GpC. However, the distance between guanine amino groups in CpG sequences is nearly the same as the distance in the cross-linked adduct, whereas the amino group separation at GpC sites is substantially larger in the starting DNA than in the adduct. We suggest that the favorable placement of the second reaction center in CpG greatly accelerates the second step in the cross-linking reaction. As shown by a competition assay, mitomycins bind A-T and G-C sequences noncovalently equally well, even though the only sequence that yields appreciable cross-linking is CpG. N-Methylmitomycin A and its aziridinomitosene are found to be better cross-linking agents than is mitomycin C.  相似文献   

3.
The DNA sequence specificity of cyanomorpholinoadriamycin   总被引:1,自引:0,他引:1  
C Cullinane  D R Phillips 《FEBS letters》1991,293(1-2):195-198
  相似文献   

4.
DNA sequence specificity of mitoxantrone.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

5.
Looking into DNA recognition: zinc finger binding specificity   总被引:3,自引:2,他引:3  
We present a quantitative, theoretical analysis of the recognition mechanisms used by two zinc finger proteins: Zif268, which selectively binds to GC-rich sequences, and a Zif268 mutant, which binds to a TATA box site. This analysis is based on a recently developed method (ADAPT), which allows binding specificity to be analyzed via the calculation of complexation energies for all possible DNA target sequences. The results obtained with the zinc finger proteins show that, although both mainly select their targets using direct, pairwise protein–DNA interactions, they also use sequence-dependent DNA deformation to enhance their selectivity. A new extension of our methodology enables us to determine the quantitative contribution of these two components and also to measure the contributions of individual residues to overall specificity. The results show that indirect recognition is particularly important in the case of the TATA box binding mutant, accounting for 30% of the total selectivity. The residue-by-residue analysis of the protein–DNA interaction energy indicates that the existence of amino acid–base contacts does not necessarily imply sequence selectivity, and that side chains without contacts can nevertheless contribute to defining the protein's target sequence.  相似文献   

6.
We describe a package of DNA data handling and analysis programs designed for microcomputers. The package is convenient for immediate use by persons with little or no computer experience, and has been optimized by trial in our group for a year. By typing a single command, the user enters a system which asks questions or gives instructions in English. The system will enter, alter, and manage sequence files or a restriction enzyme library. It generates the reverse complement, translates, calculates codon usage, finds restriction sites, finds homologies with various degrees of mismatch, and graphs amino acid composition or base frequencies. A number of options for data handling and printing can be used to produce figures for publication. The package will be available in ANSI Standard FORTRAN for use with virtually any FORTRAN compiler.  相似文献   

7.
We have examined the ability of naphthylquinoline, a 2,7-disubstituted anthraquinone and BePI, a benzo[e]pyridoindole derivative, to stabilize parallel DNA triplexes of different base composition. Fluorescence melting studies, with both inter- and intramolecular triplexes, show that all three ligands stabilize triplexes that contain blocks of TAT triplets. Naphthylquinoline has no effect on triplexes formed with third strands composed of (TC)n or (CCT)n, but stabilizes triplexes that contain (TTC)n. In contrast, BePI slightly destabilizes the triplexes that are formed at (TC)n (CCT)n and (TTC)n. 2,7-Anthraquinone stabilizes (TC)n (CCT)n and (TTC)n, although it has the greatest effect on the latter. DNase I footprinting studies confirm that triplexes formed with (CCT)n are stabilized by the 2,7-disubstituted amidoanthraquinone but not by naphthylquinoline. Both ligands stabilize the triplex formed with (CCTT)n and neither affects the complex with (CT)n. We suggest that BePI and naphthylquinoline can only bind between adjacent TAT triplets, while the anthraquinone has a broader sequence of selectivity. These differences may be attributed to the presence (naphthylquinoline and BePI) or absence (anthraquinone) of a positive charge on the aromatic portion of the ligand, which prevents intercalation adjacent to C+GC triplets. The most stable structures are formed when the stacked rings (bases or ligand) alternate between charged and uncharged species. Triplexes containing alternating C+GC and TAT triplets are not stabilized by ligands as they would interrupt the alternating pattern of charged and uncharged residues.  相似文献   

8.
9.
Negative supercoiling of substrate DNA dramatically alters the in vitro sequence specificity of mammalian DNA methyltransferase (DNA MeTase). This result suggests that in vivo site selection by DNA MeTase could be regulated by conformational information in the form of alternative secondary structures induced in DNA by local supercoiling or by the binding of specific nuclear proteins. DNA in the left-handed Z-form is shown not to be a substrate for mammalian DNA MeTase. The sensitivity of DNA MeTase to DNA structure may also make it useful as a probe for sequences which undergo supercoiling-dependent structural transitions in vitro.  相似文献   

10.
The unbinding force of Zif268-DNA complex has been studied by atomic force microscopy (AFM). DNA and Zif268 were covalently immobilized on the surfaces of an AFM tip and glass substrate, respectively. Confocal microscopy was used to confirm the successful immobilization of DNA. Because of the complexity of the protein-DNA interaction, parallel experiments were designed to discriminate specific interactions. For such experiments, a typical unbinding force of a single Zif268-DNA complex (approx 550 pN at 40 nN/s force loading rate) was evaluated.  相似文献   

11.
The sequence specificity of vertebrate DNA methylation.   总被引:2,自引:6,他引:2       下载免费PDF全文
The relative quantity of 5-methyl cytosine in vertebrate nuclear DNA shows species and tissue variation. To determine whether this is due to the action of species or cell specific DNA methylases the sequence specificity of the 5-methyl cytosine distribution in the DNA of a range of cells has been partially characterised. The pattern of methylation was found to be remarkably constant and indicates stringent evolutionary conservation of the characteristics of vertebrate DNA methylation.  相似文献   

12.
Approximately 39 to 49% of the genome of finger millet consists of repetitive DNA sequences which intersperse with 18% of single copy DNA sequences of 1900 nucleotide pairs. Agarose gel filtration and electrophoresis experiments have yielded the sizes of interspersed repeated sequences as 4000–4200 nucleotide pairs and 150–200 nucleotide pairs. Approximately 20% of the repeated DNA sequences (4000–4200 nucleotide pairs) are involved in long range interspersion pattern, while 60% of the repeated DNA sequences (150–200 nucleotide pairs) are involved in short period interspersion pattern. Based on the data available in literature and the results described here on DNA sequence organization in plants, it is proposed that plants with haploid DNA content of more than 2.5 pg exhibit mostly the short period interspersion pattern, while those with haploid DNA content of less than 2.5 pg show diverse patterns of genome organization. NCL Communication No.: 2708  相似文献   

13.
The zinc finger motif was used as a vehicle for the initial discovery of Ikaros in the context of T-cell differentiation and has been central to all subsequent analyses of Ikaros function. The Ikaros gene is alternately spliced to produce several isoforms that confer diversity of function and consequently have complicated analysis of the function of Ikaros in vivo. Key features of Ikaros in vivo function are associated with six C2H2 zinc fingers; four of which are alternately incorporated in the production of the various Ikaros isoforms. Although no complete structures are available for the Ikaros protein or any of its family members, considerable evidence has accumulated about the structure of zinc fingers and the role that this structure plays in the functions of the Ikaros family of proteins. This review summarizes the structural aspects of Ikaros zinc fingers, individually, and in tandem to provide a structural context for Ikaros function and to provide a structural basis to inform the design of future experiments with Ikaros and its family members.  相似文献   

14.
A transgene, flanked by zinc finger nuclease (ZFN) cleavage sites, was deleted from a stably transformed plant by crossing it with a second plant expressing a corresponding ZFN gene. A target construct, containing a GUS reporter gene flanked by ZFN cleavage sites, a GFP reporter gene and a PAT selectable marker gene, was transformed into tobacco. Basta®-resistant plants were regenerated and screened for GUS and GFP expression. A second construct, containing a ZFN gene driven by the constitutive CsVMV promoter and an HPT selectable marker gene, was also transformed into tobacco. Selected T0 plants were grown to maturity and allowed to self-pollinate. Homozygous target plants, which expressed GUS and GFP, were crossed with homozygous ZFN plants, which expressed the ZFN gene. Numerous GUS-negative plants were observed among the hybrids with one particular cross displaying ~35% GUS-negative plants. Evidence for complete deletion of a 4.3 kb sequence comprising the GUS gene was obtained and sequence confirmed. Co-segregation in F2 progenies of ‘truncated’ and ‘intact’ target sequences with expected reporter gene phenotypes were observed. Since ZFNs can be designed to bind and cleave a wide range of DNA sequences, these results constitute a general strategy for creating targeted gene deletions.  相似文献   

15.
Site-specific initiation of DNA replication is a conserved function in all organisms. In Escherichia coli and Saccharomyces cerevisiae, DNA replication origins are sequence specific, but in multicellular organisms, origins are not so clearly defined. In this article, I present a model of origin specification by epigenetic mechanisms that allows the establishment of stable chromatin domains, which are characterized by autonomous replication. According to this model, origins of DNA replication help to establish domains of gene expression for the generation of cell diversity.  相似文献   

16.
The sequence specificity of an extensively purified DNA methylase preparation from Krebs II mouse ascites cells has been examined. The enzyme appears to be highly sequence dependent. Moreover the sequence distribution of cytosine residues that are methylated, bears a very close resemblance to the sequence distribution of 5'-methyl cytosine found in vivo in a wide range of vertebrate cells and is consistent with methylation of cytosines in the sequence R-Yn-C-R.  相似文献   

17.
We describe the further development of a widely used package of DNA and protein sequence analysis programs for microcomputers (1,2,3). The package now provides a screen oriented user interface, and an enhanced working environment with powerful formatting, disk access, and memory management tools. The new GenBank floppy disk database is supported transparently to the user and a similar version of the NBRF protein database is provided. The programs can use sequence file annotation to automatically annotate printouts and translate or extract specified regions from sequences by name. The sequence comparison programs can now perform a 5000 X 5000 bp analysis in 12 minutes on an IBM PC. A program to locate potential protein coding regions in nucleic acids, a digitizer interface, and other additions are also described.  相似文献   

18.
The DNA sequence specificity of stimulation of DNA polymerases by factor D   总被引:1,自引:0,他引:1  
The mechanism of enhancement of DNA polymerase activity by the murine DNA-binding protein factor D was investigated. Extension by Escherichia coli DNA polymerase I and calf thymus DNA polymerase-alpha of 5'-32P-labeled oligodeoxynucleotide primers that are complementary to poly(dT) or to bacteriophage M13 DNA was measured in the absence or presence of factor D. With 5'-[32P](dA)9.poly(dT), factor D enables E. coli polymerase I to fill approximately 15-nucleotide gaps between adjacent primers; whereas in the absence of the stimulatory protein, poly(dT) is not copied significantly. In order to study the nucleotide specificity of synthesis enhancement, we used M13mp10 DNA containing 4 consecutive thymidine residues downstream from the 3-hydroxyl terminus of an oligonucleotide primer. Upon addition of factor D, both polymerase I and polymerase-alpha can traverse this sequence more efficiently and thus generate longer DNA products. Densitometric analysis of nonextended and elongated 5'-32P-labeled M13 primer indicates that, without changing the frequency of primer utilization, factor D enhances the activity of these DNA polymerases by increasing their apparent processivity. By positioning oligonucleotide primers 4, 8, and 12 bases upstream from the (dT)4 template sequence, we show that the enhancement of synthesis by factor D is independent of the position of the oligothymidine cluster. We hypothesize that factor D interacts with oligo(dT).oligo(dA) domains in DNA to alter their conformation, which may normally obstruct the progression of DNA polymerases.  相似文献   

19.
Looking for new means of assessing local conformational and dynamic heterogeneities in DNA structure, we have estimated the rates of phosphodiester bond cleavage in DNA fragments of known sequence caused by ultrasonic treatment. Among the 16 dinucleotide steps possible, those with 5′-ward cytosine [5′-d(CpN)-3′] are distinguished by significantly higher cleavage rates: CG > CA = CT > CC. The possible causes of this intriguing phenomenon are considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号