首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolytic cleavage of the hydantoin ring of allantoin, catalyzed by allantoinase, is required for the utilization of the nitrogen present in purine-derived compounds. The allantoinase gene (DAL1), however, is missing in many completely sequenced organisms able to use allantoin as a nitrogen source. Here we show that an alternative allantoinase gene (puuE) can be precisely identified by analyzing its logic relationship with three other genes of the pathway. The novel allantoinase is annotated in structure and sequence data bases as polysaccharide deacetylase for its homology with enzymes that catalyze hydrolytic reactions on chitin or peptidoglycan substrates. The recombinant PuuE protein from Pseudomonas fluorescens exhibits metal-independent allantoinase activity and stereospecificity for the S enantiomer of allantoin. The crystal structures of the protein and of protein-inhibitor complexes reveal an overall similarity with the polysaccharide deacetylase beta/alpha barrel and remarkable differences in oligomeric assembly and active site geometry. The conserved Asp-His-His metal-binding triad is replaced by Glu-His-Trp, a configuration that is distinctive of PuuE proteins within the protein family. An extra domain at the top of the barrel offers a scaffold for protein tetramerization and forms a small substrate-binding cleft by hiding the large binding groove of polysaccharide deacetylases. Substrate positioning at the active site suggests an acid/base mechanism of catalysis in which only one member of the catalytic pair of polysaccharide deacetylases has been conserved. These data provide a structural rationale for the shifting of substrate specificity that occurred during evolution.  相似文献   

2.
Bromophenol red (BPR) binds to lysozyme and inhibits its activity against bacterial cell walls, but not against the polysaccharide component of peptidoglycan. The binding site of BPR in the enzyme has been characterised by X-ray analysis of the complex at 5.5A resolution. The new binding site, which is outside the cleft close to subsite F, is presumably involved in interactions with the peptide component of peptidoglycan, in the action of lysozyme against bacterial cell walls.  相似文献   

3.
Peptidoglycan deacetylases (PGNG‐dacs) belong to the Carbohydrate Esterase Family 4 (CE4) and have been described as required for bacterial evasion to lysozyme and innate immune responses. Interestingly, there is an unusual occurrence of 10 putative polysaccharide deacetylases, including five PGNG‐dacs, in the Bacillus sp. genomes, especially B. cereus and B. anthracis. To elucidate the physiological role of these multiple deacetylases, we employed genetic analysis and protein localization studies of five putative PGNG‐dacs from B. anthracis as well as biochemical analysis of their corresponding homologues from B. cereus. Our data confirm that three enzymes are PGNG‐dacs. While BA1977, associated with lateral peptidoglycan synthesis, is a bona fide peptidoglycan deacetylase involved in resistance to host lysozyme and required for full virulence, BA1961 and BA3679 participate in the biogenesis of the peptidoglycan during both elongation and cell division. Furthermore, two enzymes are important for neutral polysaccharide attachment to PG and consequently anchoring of S‐layer proteins (BA5436) and for polysaccharide modification (BA2944). Our results provide novel and fundamental insights into the function of polysaccharide deacetylases in a major bioterrorism agent.  相似文献   

4.
Peptidoglycan deacetlyase (HP0310, HpPgdA) from the gram‐negative pathogen Helicobacter pylori, is the enzyme responsible for a peptidoglycan modification that counteracts the host immune response. In a recent study, we determined the crystallographic structure of the enzyme, which is a homo‐tetramer (Shaik et al., PloS One 2011;6:e19207). The metal‐binding site, which is essential for the enzyme's catalytic activity, is visible within the structure, but we were unable to identify the nature of the metal itself. In this study, we have obtained a higher‐resolution crystal structure of the enzyme, which shows that the ion bound is, in fact, zinc. Analysis of the structure of the four sites, one per monomer, and quantum chemical calculations of models of the site in the presence of different divalent metal ions show an intrinsic preference for zinc, but also significant flexibility of the site so that binding of other ions can eventually occur. Proteins 2014; 82:1311–1318. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The major peptidoglycan hydrolase of Enterococcus faecalis, AtlA, has been identified, but its enzyme activity remains unknown. We have used tandem mass spectrometry analysis of peptidoglycan hydrolysis products obtained using the purified protein to show that AtlA is an N-acetylglucosaminidase. To gain insight into the regulation of its enzyme activity, the three domains of AtlA were purified alone or in combination following expression of truncated forms of the atlA gene in Escherichia coli or partial digestion of AtlA by proteinase K. The central domain of AtlA was catalytically active, but its activity was more than two orders of magnitude lower than that of the complete protein. Partial proteolysis of AtlA was detected in vivo: zymograms of E. faecalis extracts revealed two catalytically active protein bands of 62 and 72 kDa that were both absent in extracts from an atlA null mutant. Limited digestion of AtlA by proteinase K in vitro suggested that the proteolytic cleavage of AtlA in E. faecalis extracts corresponds to the truncation of the N-terminal domain, which is rich in threonine and glutamic acid residues. We show that the truncation of the N-terminal domain from recombinant AtlA has no impact on enzyme activity. The C-terminal domain of the protein, which contains six LysM modules bound to highly purified peptidoglycan, was required for optimal enzyme activity. These data indicate that AtlA is not produced as a proenzyme and that control of the AtlA glucosaminidase activity is likely to occur at the level of LysM-mediated binding to peptidoglycan.  相似文献   

6.
The genomes of Bacillus cereus and its closest relative Bacillus anthracis contain 10 polysaccharide deacetylase homologues. Six of these homologues have been proposed to be peptidoglycan N-acetylglucosamine deacetylases. Two of these genes, namely bc1960 and bc3618, have been cloned and expressed in Escherichia coli, and the recombinant enzymes have been purified to homogeneity and further characterized. Both enzymes were effective in deacetylating cell wall peptidoglycan from the Gram(+) Bacillus cereus and Bacillus subtilis and the Gram(-) Helicobacter pylori as well as soluble chitin substrates and N-acetylchitooligomers. However, the enzymes were not active on acetylated xylan. These results provide insight into the substrate specificity of carbohydrate esterase family 4 enzymes. It was revealed that both enzymes deacetylated only the GlcNAc residue of the synthetic muropeptide N-acetyl-D-glucosamine-(beta-1,4)-N-acetylmuramyl-L-alanine-D-isoglutamine. Analysis of the constituent muropeptides of peptidoglycan from B. subtilis and H. pylori resulting from incubation of the enzymes BC1960 and BC3618 with these polymers and subsequent hydrolysis by Cellosyl and mutanolysin, respectively, similarly revealed that both enzymes deacetylate GlcNAc residues of peptidoglycan. Kinetic analysis toward GlcNAc(2-6) revealed that GlcNAc4 was the favorable substrate for both enzymes. Identification of the sequence of N-acetychitooligosaccharides (GlcNAc(2-4)) following enzymatic deacetylation by using 1H NMR revealed that both enzymes deacetylate all GlcNAc residues of the oligomers except the reducing end ones. Enzymatic deacetylation of chemically acetylated vegetative peptidoglycan from B. cereus by BC1960 and BC3618 resulted in increased resistance to lysozyme digestion. This is the first biochemical study of bacterial peptidoglycan N-acetylglucosamine deacetylases.  相似文献   

7.
Peptidoglycan deacetylases protect the Gram-positive bacteria cell wall from host lysozymes by deacetylating peptidoglycan. Sequence analysis of the genome of Shigella flexneri predicts a putative polysaccharide deacetylase encoded by the plasmidic gene orf185, renamed here SfpgdA. We demonstrated a peptidoglycan deacetylase (PGD) activity with the purified SfPgdA in vitro. To investigate the role SfPgdA in virulence, we constructed a SfpgdA mutant and studied its phenotype in vitro. The mutant showed an increased sensitivity to lysozyme compared to the parental strain. Moreover, the mutant was rapidly killed by polymorphonuclear neutrophils (PMNs). Specific substitution of histidines residues 120 and 125, located within the PGD catalytic domain, by phenylalanine abolished SfPgdA function. SfPgdA expression is controlled by PhoP. Mutation of phoP increases sensitivity to lysozyme compared to the SfpgdA mutant. Here, we confirmed that SfPgdA expression is enhanced under low magnesium concentration and not produced by the phoP mutant. Ectopic expression of SfPgdA in the phoP mutant restored lysozyme resistance and parental bacterial persistence within PMNs. Together our results indicate that PG deacetylation mechanism likely contributes to Shigella persistence by subverting detection by the host immune system.  相似文献   

8.
The active site nucleophile of the beta-glucosidase of Agrobacterium faecalis has recently been identified by the use of inhibitors. A combination of site-directed and in vitro enzymatic mutagenesis was carried out on the beta-glucosidase to probe the structure of the active site region. Forty-three point mutations were generated at 22 different residues in the region surrounding the active site nucleophile, Glu358. Only five positions were identified which affected enzyme activity indicating that only a few key residues are important to enzyme activity, thus the enzyme can tolerate a number of single residue changes and still function. The importance of Glu358 to enzymatic function has been confirmed and other residues important to enzyme structure or function have been identified.  相似文献   

9.
The genome sequence of the oral pathogen Streptococcus mutans predicts the presence of two putative polysaccharide deacetylases. The first, designated PgdA in this paper, shows homology to the catalytic domains of peptidoglycan deacetylases from Streptococcus pneumoniae and Listeria monocytogenes, which are both thought to be involved in the bacterial defense mechanism against human mucosal lysozyme and are part of the CAZY family 4 carbohydrate esterases. S. mutans cells in which the pgdA gene was deleted displayed a different colony texture and a slightly increased cell surface hydrophobicity and yet did not become hypersensitive to lysozyme as shown previously for S. pneumoniae. To understand this apparent lack of activity, the high-resolution X-ray structure of S. mutans PgdA was determined; it showed the typical carbohydrate esterase 4 fold, with metal bound in a His-His-Asp triad. Analysis of the protein surface showed that an extended groove lined with aromatic residues is orientated toward the active-site residues. The protein exhibited metal-dependent de-N-acetylase activity toward a hexamer of N-acetylglucosamine. No activity was observed toward shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. In agreement with the lysozyme data this would suggest that S. mutans PgdA does not act on peptidoglycan but on an as-yet-unidentified polysaccharide within the bacterial cell surface. Strikingly, the pgdA-knockout strain showed a significant increase in aggregation/agglutination by salivary agglutinin, in agreement with this gene acting as a deacetylase of a cell surface glycan.  相似文献   

10.
Peptidoglycan hydrolases are key enzymes in bacterial cell wall homeostasis. Understanding the substrate specificity and biochemical activity of peptidoglycan hydrolases in Mycobacterium tuberculosis is of special interest as it can aid in the development of new cell wall targeting therapeutics. In this study, we report biochemical and structural characterization of the mycobacterial N-acetylmuramyl-l-alanine amidase, Rv3717. The crystal structure of Rv3717 in complex with a dipeptide product shows that, compared with previously characterized peptidoglycan amidases, the enzyme contains an extra disulfide-bonded β-hairpin adjacent to the active site. The structure of two intermediates in assembly reveal that Zn2+ binding rearranges active site residues, and disulfide formation promotes folding of the β-hairpin. Although Zn2+ is required for hydrolysis of muramyl dipeptide, disulfide oxidation is not required for activity on this substrate. The orientation of the product in the active site suggests a role for a conserved glutamate (Glu-200) in catalysis; mutation of this residue abolishes activity. The product binds at the head of a closed tunnel, and the enzyme showed no activity on polymerized peptidoglycan. These results point to a potential role for Rv3717 in peptidoglycan fragment recycling.  相似文献   

11.
N-lysine acetylation is a posttranslational modification that has been well studied in eukaryotes and is likely widespread in prokaryotes as well. The central metabolic enzyme acetyl-CoA synthetase is regulated in both bacteria and eukaryotes by acetylation of a conserved lysine residue in the active site. In the purple photosynthetic α-proteobacterium Rhodopseudomonas palustris, two protein acetyltransferases (RpPat and the newly identified RpKatA) and two deacetylases (RpLdaA and RpSrtN) regulate the activities of AMP-forming acyl-CoA synthetases. In this work, we used LC/MS/MS to identify other proteins regulated by the N-lysine acetylation/deacetylation system of this bacterium. Of the 24 putative acetylated proteins identified, 14 were identified more often in a strain lacking both deacetylases. Nine of these proteins were members of the AMP-forming acyl-CoA synthetase family. RpPat acetylated all nine of the acyl-CoA synthetases identified by this work, and RpLdaA deacetylated eight of them. In all cases, acetylation occurred at the conserved lysine residue in the active site, and acetylation decreased activity of the enzymes by >70%. Our results show that many different AMP-forming acyl-CoA synthetases are regulated by N-lysine acetylation. Five non-acyl-CoA synthetases were identified as possibly acetylated, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Rpa1177, a putative 4-oxalocrotonate tautomerase. Neither RpPat nor RpKatA acetylated either of these proteins in vitro. It has been reported that Salmonella enterica Pat (SePat) can acetylate a number of metabolic enzymes, including GAPDH, but we were unable to confirm this claim, suggesting that the substrate range of SePat is not as broad as suggested previously.  相似文献   

12.
AcmA, the major autolysin of Lactococcus lactis MG1363 is a modular protein consisting of an N-terminal active site domain and a C-terminal peptidoglycan-binding domain. The active site domain is homologous to that of muramidase-2 of Enterococcus hirae, however, RP-HPLC analysis of muropeptides released from Bacillus subtilis peptidoglycan, after digestion with AcmA, shows that AcmA is an N-acetylglucosaminidase. In the C-terminus of AcmA three highly similar repeated regions of 45 amino acid residues are present, which are separated by short nonhomologous sequences. The repeats of AcmA, which belong to the lysine motif (LysM) domain family, were consecutively deleted, removed, or, alternatively, one additional repeat was added, without destroying the cell wall-hydrolyzing activity of the enzyme in vitro, although AcmA activity was reduced in all cases. In vivo, proteins containing no or only one repeat did not give rise to autolysis of lactococcal cells, whereas separation of the producer cells from the chains was incomplete. Exogenously added AcmA deletion derivatives carrying two repeats or four repeats bound to lactococcal cells, whereas the derivative with no or one repeat did not. In conclusion, these results show that AcmA needs three LysM domains for optimal peptidoglycan binding and biological functioning.  相似文献   

13.
We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis.  相似文献   

14.
15.
The pneumococcus is an important Gram-positive pathogen, which shows increasing resistance to antibiotics, including β-lactams that target peptidoglycan assembly. Understanding cell-wall synthesis, at the molecular and cellular level, is essential for the prospect of combating drug resistance. As a first step towards reconstituting pneumococcal cell-wall assembly in vitro, we present the characterization of the glycosyltransferase activity of penicillin-binding protein (PBP)2a from Streptococcus pneumoniae. Recombinant full-length membrane-anchored PBP2a was purified by ion-exchange chromatography. The glycosyltransferase activity of this enzyme was found to differ from that of a truncated periplasmic form. The full-length protein with its cytoplasmic and transmembrane segment synthesizes longer glycan chains than the shorter form. The transpeptidase active site was functional, as shown by its reactivity towards bocillin and the catalysis of the hydrolysis of a thiol-ester substrate analogue. However, PBP2a did not cross-link the peptide stems of glycan chains in vitro. The absence of transpeptidase activity indicates that an essential component is missing from the in vitro system.  相似文献   

16.
Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds.  相似文献   

17.
Yersinia pestis produces and secretes a toxin named pesticin that kills related bacteria of the same niche. Uptake of the bacteriocin is required for activity in the periplasm leading to hydrolysis of peptidoglycan. To understand the uptake mechanism and to investigate the function of pesticin, we combined crystal structures of the wild type enzyme, active site mutants, and a chimera protein with in vivo and in vitro activity assays. Wild type pesticin comprises an elongated N-terminal translocation domain, the intermediate receptor binding domain, and a C-terminal activity domain with structural analogy to lysozyme homologs. The full-length protein is toxic to bacteria when taken up to the target site via the outer or the inner membrane. Uptake studies of deletion mutants in the translocation domain demonstrate their critical size for import. To further test the plasticity of pesticin during uptake into bacterial cells, the activity domain was replaced by T4 lysozyme. Surprisingly, this replacement resulted in an active chimera protein that is not inhibited by the immunity protein Pim. Activity of pesticin and the chimera protein was blocked through introduction of disulfide bonds, which suggests unfolding as the prerequisite to gain access to the periplasm. Pesticin, a muramidase, was characterized by active site mutations demonstrating a similar but not identical residue pattern in comparison with T4 lysozyme.  相似文献   

18.
Several strains of bacteriophage have been isolated that induce the formation of a polysaccharide hydrolase after infection of Klebsiella aerogenes type 54 [A3(S1)]. The action of this enzyme on polysaccharide solutions was to decrease their viscosity and increase their reducing value. These effects were associated with the release of two oligosaccharides (O1 and O2) from the polysaccharide. These two substances are not identical with any of the four oligosaccharides isolated from autohydrolysates. The two enzymically isolated fractions have been tentatively identified as tetrasaccharides, and oligosaccharide O2 is probably an acetylated version of oligosaccharide O1. This latter oligosaccharide differs in some way, still unknown, from the tetrasaccharide cellobiosylglucuronosylfucose found in acid hydrolysates of the slime polysaccharide. The enzyme is limited in its activity to the polysaccharide excreted by the A3 strain of K. aerogenes type 54 or by similar strains. It is also active on the polysaccharides altered by acid or alkaline treatment. The enzyme has optimum activity at pH6.5. A study of the products released by enzyme action has shown it to be a fucosidase splitting the fucosylglucose linkages found in the intact polysaccharide.  相似文献   

19.
Firczuk M  Bochtler M 《Biochemistry》2007,46(1):120-128
Murein endopeptidase A (MepA) from Escherichia coli is a periplasmic peptidoglycan amidase that cleaves d,d amide bonds between d-alanine and meso-2,6-diaminopimelic acid in E. coli peptidoglycan. MepA and its homologues in other proteobacteria share overall structural similarity with d-Ala-d-Ala metallopeptidases and local similarity around the active site with lysostaphin-type enzymes, which has prompted the classification of these enzymes as LAS enzymes. LAS enzymes contain a single divalent cation in the active site, which is tetracoordinated in the crystal structures. Three of the metal ligands are identical in all structures, but the identity of the fourth ligand varies. Two residues in proximity to the metal might act as a general acid/base, but their role is not clear. Here, we report a new MepA expression system, which allows the separation of MepA variants from the endogenous wild-type enzyme, and an HPLC assay with a defined peptidoglycan fragment, which allows assessment of MepA activity without a refolding step. We find that the conserved metal ligands are required for folding (D120) or catalysis (H113, H211). Separate mutations of the candidate catalytic residues H206 or H209 and of the "fourth" metal ligand H110 are tolerated for folding but drastically reduce activity. Mutation of residue W203 to aspartate impairs substrate binding.  相似文献   

20.
Two enzyme activities involved in the biosynthesis of peptidoglycan in Micrococcus luteus (sodonensis), a transglycosidase and a phosphodiesterase, have been demonstrated in isolated membrane preparations. The transglycosidase activity promotes the in vitro synthesis of an uncross-bridged peptidoglycan that is completely susceptible to lysozyme. This in vitro-synthesized peptidoglycan consists of 76% "soluble" and 24% "insoluble" material. The soluble peptidoglycan is primarily a single low-molecular-weight species of approximately 20 disaccharide peptide units. "Insoluble" peptidoglycan, which likely represents newly synthesized material incorporated into an existing cell wall, was solubilized by butanol extraction, and the two were compared. The phosphodiesterase activity demonstrated in this system cleaves uridine diphosphate-N-acetylmuramyl-L-alanyl-D-isoglutamyl-L-lysyl-D-alanyl-D-alanine to yield N-acetylmuramyl-L-alanyl-D-isoglutamyl-L-lysyl-D-alanyl-D-alanine plus uridine 5'-monophosphate plus inorganic phosphate. This phosphodiesterase activity, not detected under normal transglycosidase assay conditions, is a recycling mechanism and acts indirectly through formation and subsequent cleavage of a lipid-linked intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号