首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nociception evoked prostaglandin (PG) release in the spinal cord considerably contributes to the induction of hyperalgesia and allodynia. To evaluate the relative contribution of cyclooxygenase-1 (COX-1) and COX-2 in this process we assessed the effects of the selective COX-1 inhibitor SC560 and the selective COX-2 inhibitor celecoxib on formalin-evoked nociceptive behaviour and spinal PGE(2) release. SC560 (10 and 20 mg/kg) significantly reduced the nociceptive response and completely abolished the formalin-evoked PGE(2) raise. In contrast, celecoxib (10 and 20 mg/kg) was ineffective in both regards, i.e. the flinching behaviour was largely unaltered and the formalin-induced PGE(2) raise as assessed using microdialysis was only slightly, not significantly reduced. This suggests that the formalin-evoked rapid PG release was primarily caused by COX-1 and was independent of COX-2. Mean free spinal cord concentrations of celecoxib during the formalin assay were 32.0 +/- 4.5 nM, thus considerably higher than the reported IC50 for COX-2 (3-7 nM). Therefore, the lack of efficacy of celecoxib is most likely not to be a result of poor tissue distribution. COX-2 mRNA and protein expression in the spinal cord were not affected by microdialysis alone but the mRNA rapidly increased following formalin injection and reached a maximum at 2 h. COX-2 protein was unaltered up to 4 h after formalin injection. The time course of COX-2 up-regulation suggests that the formalin-induced nociceptive response precedes COX-2 protein de novo synthesis and may therefore be unresponsive to COX-2 inhibition. Considering the results obtained with the formalin model it may be hypothesized that the efficacy of celecoxib in early injury evoked pain may be less than that of unselective NSAIDs.  相似文献   

2.
Svensson CI  Tran TK  Fitzsimmons B  Yaksh TL  Hua XY 《FEBS letters》2006,580(28-29):6629-6634
Serotonin (5-HT) derived from bulbo-spinal projection is released by nociceptive input into the spinal dorsal horn. Here we report that formalin injection in the paw produced pain behavior (flinching) and phosphorylation of spinal ERK1/2 (P-ERK1/2, indicating activation) in rats. Depletion of spinal 5-HT by intrathecal (IT) 5,7-DHT, a serotonergic neurotoxin, profoundly reduced formalin evoked flinching and the increase in P-ERK1/2. Ondansetron (a 5-HT3 receptor antagonist) at IT doses that inhibited flinching also attenuated spinal ERK activation. These findings reveal that primary afferent-evoked activation of spinal ERK requires the input from an excitatory 5-HT descending pathway.  相似文献   

3.
1. -CgTx attenuated formalin-evoked biphasic flinches, while PKC inhibitor (STU) attenuated phase 2 and was reversed by PDBu.2. -CgTx and STU suppressed the increase in CSF-glutamate after formalin injection.3. Morphine completely suppressed both increased flinching and CSF glutamate release.4. Thus, -CgTx (N-type Ca channels) may regulate neurotransmitter release evoked by C fiber activation and the formalin-evoked hyperalgesia may possibly be provoked as a result of PKC activation elicited by both presynaptic neurotransmitter release and activation of NMDA receptors in the spinal neurons.  相似文献   

4.
We investigated the antagonism of sevoflurane antinociception by opioid antagonists in the rat formalin test. Formalin injection into the hindpaw of the rat induces the nocifensive flinching behavior and the expression of Fos-like immunoreactivity (Fos-LI) in the spinal cord. Sevoflurane significantly suppressed the flinching behavior and decreased the number of Fos-LI neurons in the dorsal horn of spinal cord compared with the control group. Moreover, pretreatment with intraperitoneal naloxone plus naltrexone antagonized the suppression of flinching behavior and the decrease of the number of Fos-LI neurons produced by 3% sevoflurane. Intraperitoneal opioid antagonists themselves had no effects on both the behavior response and the expression of Fos-LI induced by formalin injection. This study supports the hypothesis that sevoflurane suppresses the nociceptive response, at least in part, by activating endogenous opioid systems.  相似文献   

5.
1.In rats, injection of mustard oil (MO) into the paw caused a gradual increase in flinching of the injected paw and this algogenic behavior corresponded with an increase in the CSF-Glu level.2.The nerve growth factor (NGF) inducer, 4-methyl catechol (4MC), enhanced the frequency of flinching and this effect was dose dependent. In addition, spinal CSF-Glu release was significantly above baseline 10 min after MO injection. In contrast, morphine (MOR) pretreatment completely blocked this behavioral and neurohumoral effect.3.Anti-NGF paw injection attenuated the algogenic behavior and spinal Glu release otherwise observed after 4MC treatment.4.The results demonstrated that MO-induced hyperalgesia is associated with increased CSF-Glu release and that this effect is potentiated by a NGF inducer. These data also suggest a possible involvement of NGF in the development of central sensitization after acute peripheral nociceptive stimulation.  相似文献   

6.
Hypotaurine is an intermediate in taurine biosynthesis from cysteine in astrocytes. Although hypotaurine functions as an antioxidant and organic osmolyte, its physiological role in the central nervous system remains unclear. This study used behavioral assessments to determine whether hypotaurine influenced nociceptive transmission in acute, inflammatory, and neuropathic pain. The tail flick, paw pressure, and formalin tests were performed in male Sprague-Dawley rats to examine the effects of the intrathecal administration of hypotaurine (100, 200, 400, 600?μg) on thermal, mechanical, and chemical nociception. Chronic constriction injury (CCI) to the sciatic nerve was induced in the rats, and the electronic von Frey test and plantar test were performed to assess the effects on neuropathic pain. To determine which neurotransmitter pathway(s) was involved in the action of hypotaurine, in this study, we examined how the antagonists of spinal pain processing receptors altered the effect of 600?μg hypotaurine. To explore whether hypotaurine affected motor performance, the Rotarod test was conducted. Hypotaurine had antinociceptive effects on thermal, mechanical, and chemical nociception in the spinal cord. In CCI rats, hypotaurine alleviated mechanical allodynia and thermal hyperalgesia. These effects were reversed completely by pretreatment with an intrathecal injection of strychnine, a glycine receptor antagonist. Conversely, hypotaurine did not affect motor performance. This study demonstrated that intrathecal hypotaurine suppressed acute, inflammatory, and neuropathic pain. Hypotaurine may regulate nociceptive transmission physiologically by activating glycinergic neurons in the spinal cord, and it is a promising candidate for treating various pain states.  相似文献   

7.
Toll-like receptors (TLRs) play an essential role in innate immune responses and in the initiation of adaptive immune responses. Microglia, the resident innate immune cells in the CNS, express TLRs. In this study, we show that TLR3 is crucial for spinal cord glial activation and tactile allodynia after peripheral nerve injury. Intrathecal administration of TLR3 antisense oligodeoxynucleotide suppressed nerve injury-induced tactile allodynia, and decreased the phosphorylation of p38 mitogen-activated protein kinase, but not extracellular signal-regulated protein kinases 1/2, in spinal glial cells. Antisense knockdown of TLR3 also attenuated the activation of spinal microglia, but not astrocytes, caused by nerve injury. Furthermore, down-regulation of TLR3 inhibited nerve injury-induced up-regulation of spinal pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. Conversely, intrathecal injection of the TLR3 agonist polyinosine–polycytidylic acid induced behavioral, morphological, and biochemical changes similar to those observed after nerve injury. Indeed, TLR3-deficient mice did not develop tactile allodynia after nerve injury or polyinosine–polycytidylic acid injection. Our results indicate that TLR3 has a substantial role in the activation of spinal glial cells and the development of tactile allodynia after nerve injury. Thus, blocking TLR3 in the spinal glial cells might provide a fruitful strategy for treating neuropathic pain.  相似文献   

8.
Chronic pain due to nerve injury is resistant to current analgesics. Animal models of neuropathic pain show neuronal plasticity and behavioral reflex sensitization in the spinal cord that depend on the NMDA receptor. We reveal complexes of NMDA receptors with the multivalent adaptor protein PSD-95 in the dorsal horn of spinal cord and show that PSD-95 plays a key role in neuropathic reflex sensitization. Using mutant mice expressing a truncated form of the PSD-95 molecule, we show their failure to develop the NMDA receptor-dependent hyperalgesia and allodynia seen in the CCI model of neuropathic pain, but normal inflammatory nociceptive behavior following the injection of formalin. In wild-type mice following CCI, CaM kinase II inhibitors attenuate sensitization of behavioral reflexes, elevated constitutive (autophosphorylated) activity of CaM kinase II is detected in spinal cord, and increased amounts of phospho-Thr(286) CaM kinase II coimmunoprecipitate with NMDA receptor NR2A/B subunits. Each of these changes is prevented in PSD-95 mutant mice although CaM kinase II is present and can be activated. Disruption of CaM kinase II docking to the NMDA receptor and activation may be responsible for the lack of neuropathic behavioral reflex sensitization in PSD-95 mutant mice.  相似文献   

9.
Li TN  Li QJ  Li WB  Sun XC  Li SQ 《中国应用生理学杂志》2004,20(3):291-295,F008
目的:探讨CGRP受体拮抗剂CGRP8-37对甲醛炎性痛大鼠自发痛反应及脊髓后角NOS表达和NO含量的影响.方法:大鼠足底注射甲醛制造炎性痛模型;计数缩足反射次数反映自发痛程度;NADPH-d组织化学法观察脊髓后角NOS表达;硝酸还原酶法测定NO-3/NO-2含量以反映NO含量.结果:足底注射甲醛后,动物出现自发痛反应行为.足底注射甲醛后24 h,双侧脊髓后角NOS表达及NO含量明显增加.预先鞘内注射CGRP8-37可使甲醛诱导的自发性缩足反射次数明显减少,并可明显抑制甲醛炎性痛诱导的脊髓后角NOS表达及NO含量的增加.结论:甲醛炎性痛时,脊髓后角CGRP受体激活可促进NOS活性表达及NO的产生.  相似文献   

10.
Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were completely suppressed by repeated intrathecal (i.t.) injection of a TrkB/Fc chimera protein, which sequesters endogenous brain-derived neurotrophic factor (BDNF). In addition, BDNF heterozygous (+/-) knockout mice exhibited a significant suppression of nerve ligation-induced thermal hyperalgesia and tactile allodynia compared with wild-type mice. After nerve ligation, BDNF-like immunoreactivity on the superficial laminae of the ipsilateral side of the spinal dorsal horn was clearly increased compared with that of the contralateral side. It should be noted that a single i.t. injection of BDNF produced a long-lasting thermal hyperalgesia and tactile allodynia in normal mice, and these responses were abolished by i.t. pre-treatment with either a Trk-dependent tyrosine kinase inhibitor K-252a or a selective protein kinase C (PKC) inhibitor Ro-32-0432. Supporting these findings, we demonstrated here for the first time that the increase in intracellular Ca2+ concentration by application of BDNF in cultured mouse spinal neurons was abolished by pre-treatment with either K-252a or Ro-32-0432. Taken together, these findings suggest that the binding of spinally released BDNF to TrkB by nerve ligation may activate PKC within the spinal cord, resulting in the development of a neuropathic pain-like state in mice.  相似文献   

11.
Up-regulation of P2X4 receptors in spinal cord microglia is crucial for tactile allodynia, an untreatable pathological pain reaction occurring after peripheral nerve injury. How nerve injury in the periphery leads to this microglia reaction in the dorsal horn of the spinal cord is not yet understood. It is shown here that CCL21 was rapidly expressed in injured small-sized primary sensory neurons and transported to their central terminals in the dorsal horn. Intrathecal administration of a CCL21-blocking antibody diminished tactile allodynia development in wild-type animals. Mice deficient for CCL21 did not develop any signs of tactile allodynia and failed to up-regulate microglial P2X4 receptor expression. Microglia P2X4 expression was enhanced by CCL21 application in vitro and in vivo. A single intrathecal injection of CCL21 to nerve-injured CCL21-deficient mice induced long-lasting allodynia that was undistinguishable from the wild-type response. This effect of CCL21 injection was strictly dependent on P2X4 receptor function. Since neuronal CCL21 is the earliest yet identified factor in the cascade leading to tactile allodynia, these findings may lead to a preventive therapy in neuropathic pain.  相似文献   

12.
The antinociceptive effect of vitamin K2 (menatetrenone) in mice was examined using tail-flick and formalin test. Menatetrenone at doses of 10, 50 and 100 mg/kg, i.p. produced a dose-dependent and significant inhibition of the tail-flick response in mice. Menatetrenone (50 and 100 mg/kg, i.p.) had no significant effect on the duration of the first phase of the formalin-induced flinching. However, menatetrenone (100 mg/kg, i.p.) significantly inhibited the second phase of the formalin-induced flinching. I.p. administration of menatetrenone (100 mg/kg) significantly reduced the duration of nociceptive responses induced by i.t. injection of bradykinin, but not of substance P, prostaglandin E2 or N-methyl-D-aspartate (NMDA). These present data suggest that i.p. pretreatment with menatetrenone produced dose-dependent antinociceptive effect in mice. This effect may be, at least in part, mediated by the inhibition of bradykinin dependent nociceptive transmission in the spinal cord.  相似文献   

13.
β-cryptoxanthin, a xanthophyll carotenoid, exerts preventive effects on various lifestyle-related diseases. Here, we found that daily oral administration of β-cryptoxanthin significantly ameliorated the development of tactile allodynia following spinal nerve injury but was ineffective in mechanical allodynia in an inflammatory pain model in mice. Our results suggest that β-cryptoxanthin supplementation would be beneficial for the prophylaxis of neuropathic pain.  相似文献   

14.
High voltage-activated calcium channels (HVACCs) are essential for synaptic and nociceptive transmission. Although blocking HVACCs can effectively reduce pain, this treatment strategy is associated with intolerable adverse effects. Neuronal HVACCs are typically composed of α(1), β (Cavβ), and α(2)δ subunits. The Cavβ subunit plays a crucial role in the membrane expression and gating properties of the pore-forming α(1) subunit. However, little is known about how nerve injury affects the expression and function of Cavβ subunits in primary sensory neurons. In this study, we found that Cavβ(3) and Cavβ(4) are the most prominent subtypes expressed in the rat dorsal root ganglion (DRG) and dorsal spinal cord. Spinal nerve ligation (SNL) in rats significantly increased mRNA and protein levels of the Cavβ(3), but not Cavβ(4), subunit in the DRG. SNL also significantly increased HVACC currents in small DRG neurons and monosynaptic excitatory postsynaptic currents of spinal dorsal horn neurons evoked from the dorsal root. Intrathecal injection of Cavβ(3)-specific siRNA significantly reduced HVACC currents in small DRG neurons and the amplitude of monosynaptic excitatory postsynaptic currents of dorsal horn neurons in SNL rats. Furthermore, intrathecal treatment with Cavβ(3)-specific siRNA normalized mechanical hyperalgesia and tactile allodynia caused by SNL but had no significant effect on the normal nociceptive threshold. Our findings provide novel evidence that increased expression of the Cavβ(3) subunit augments HVACC activity in primary sensory neurons and nociceptive input to dorsal horn neurons in neuropathic pain. Targeting the Cavβ(3) subunit at the spinal level represents an effective strategy for treating neuropathic pain.  相似文献   

15.
Mei XP  Zhou Y  Wang W  Tang J  Wang W  Zhang H  Xu LX  Li YQ 《Neuro-Signals》2011,19(1):44-53
Reports suggest that microglia play a key role in spinal nerve ligation (SNL)-induced neuropathic pain, and toll-like receptor 3 (TLR3) has a substantial role in the activation of spinal microglia and the development of tactile allodynia after nerve injury. In addition, ketamine application could suppress microglial activation in vitro, and ketamine could inhibit proinflammatory gene expression possibly by suppressing TLR-mediated signal transduction. Therefore, the present study was designed to disclose whether intrathecal ketamine could suppress SNL-induced spinal microglial activation and exert some antiallodynic effects on neuropathic pain by suppressing TLR3 activation. Behavioral results showed that intrathecal ketamine attenuated SNL-induced mechanical allodynia, as well as spinal microglial activation, in a dose-dependent manner. Furthermore, Western blot analysis displayed that ketamine application downregulated SNL-induced phosphorylated-p38 (p-p38) expression, which was specifically expressed in spinal microglia but not in astrocytes or neurons. Besides, ketamine could reverse TLR3 agonist (polyinosine-polycytidylic acid)-induced mechanical allodynia and spinal microglia activation. It was concluded that intrathecal ketamine depresses TLR3-induced spinal microglial p-p38 mitogen-activated protein kinase pathway activation after SNL, probably contributing to the antiallodynic effect of ketamine on SNL-induced neuropathic pain.  相似文献   

16.
The pivotal role of estrogens in the pain sensitivity has been investigated in many ways. Traditionally, it is ascribed to the slow genomic changes mediated by classical nuclear estrogen receptors (ER), ER?? and ER??, depending on peripheral estrogens. Recently, it has become clear that estrogens can also signal through membrane ERs (mERs), such as G-protein-coupled ER1 (GPER1), mediating the non-genomic effects. However, the spinal specific role played by ERs and the underlying cellular mechanisms remain elusive. The present study investigated the rapid estrogenic regulation of nociception at the spinal level. Spinal administration of 17??-estradiol (E2), the most potent natural estrogen, acutely produced a remarkable mechanical allodynia and thermal hyperalgesia without significant differences among male, female and ovariectomized (Ovx) rats. E2-induced the pro-nociceptive effects were partially abrogated by ICI 182,780 (ERs antagonist), and mimicked by E2-BSA (a mER agonist). Inhibition of local E2 synthesis by 1,4,6-Androstatrien-3,17-dione (ATD, a potent irreversible aromatase inhibitor), or blockade of ERs by ICI 182,780 produced an inhibitory effect on the late phase of formalin nociceptive responses. Notably, lumbar puncture injection of G15 (a selective GPER1 antagonist) resulted in similar but more efficient inhibition of formalin nociceptive responses as compared with ICI 182,780. At the cellular level, the amplitude and decay time of spontaneous inhibitory postsynaptic currents were attenuated by short E2 or E2-BSA treatment in spinal slices. These results indicate that estrogen acutely facilitates nociceptive transmission in the spinal cord via activation of membrane-bound estrogen receptors.  相似文献   

17.
Substance P (SP) and its receptor, the neurokinin 1 receptor (NK1R), play important roles in transmitting and regulating somatosensory nociceptive information. However, their roles in visceral nociceptive transmission and regulation remain to be elucidated. In the previous study, moderate SP immunoreactive (SP-ir) terminals and NK1R-ir neurons were observed in the dorsal commissural nucleus (DCN) of the lumbosacral spinal cord. Thus we hypothesized that the SP-NK1R system is involved in visceral pain transmission and control within the DCN. The acute visceral pain behaviors, the colon histological changes and the temporal and spatial changes of NK1R-ir structures and Fos expression in the neurons of the DCN were observed in rats following lower colon instillation with 5% formalin. The formalin instillation induced significant acute colitis as revealed by the histological changes in the colon. NK1R internalization in the DCN was obvious at 8 min. It reached a peak (75.3%) at 30 min, began to decrease at 90 min (58.1%) and finally reached the minimum (19.7%) at 3 h after instillation. Meanwhile, formalin instillation induced a biphasic visceral pain response as well as a strong expression of Fos protein in the nuclei of neurons in the DCN. Finally, intrathecal treatment with the NK1R antagonist L732138 attenuated the NK1R internalization, Fos expression and visceral nociceptive responses. The present results suggest that the visceral nociceptive information arising from inflamed pelvic organs, such as the lower colon, might be mediated by the NK1R-ir neurons in the DCN of the lumbosacral spinal cord.  相似文献   

18.
The analgesia effects of intrathecal adenosine A1 receptor agonist, R-PIA, on the hyperalgesia and CSF-glutamate release after formalin injection into the rat paw were evaluated. R-PIA significantly and dose-dependently attenuated increases in flinching behavior, and this attenuating effect was reversed by the adenosine A1 receptor antagonist, aminophylline. Morphine blocked flinchs, however MK-801 partially abolished. The increase in CSF-glutamate release evoked by formalin stimulation was inhibited by morphine but not by either R-PIA or MK-801. These findings suggest that the intrathecal adenosine A1 receptor agonist provokes analgesic effect via the postsynaptic action independent of an effect upon spinal glutamate release.  相似文献   

19.
Antagonist studies show that spinal p38 mitogen-activated protein kinase plays a crucial role in spinal sensitization. However, there are two p38 isoforms found in spinal cord and the relative contribution of these two to hyperalgesia is not known. Here we demonstrate that the isoforms are distinctly expressed in spinal dorsal horn: p38alpha in neurons and p38beta in microglia. In lieu of isoform selective inhibitors, we examined the functional role of these two individual isoforms in nociception by using intrathecal isoform-specific antisense oligonucleotides to selectively block the expression of the respective isoform. In these rats, down-regulation of spinal p38beta, but not p38alpha, prevented nocifensive flinching evoked by intraplantar injection of formalin and hyperalgesia induced by activation of spinal neurokinin-1 receptors through intrathecal injection of substance P. Both intraplantar formalin and intrathecal substance P produced an increase in spinal p38 phosphorylation and this phosphorylation (activation) was prevented when spinal p38beta, but not p38alpha, was down-regulated. Thus, spinal p38beta, probably in microglia, plays a significant role in spinal nociceptive processing and represents a potential target for pain therapy.  相似文献   

20.
Substance P (SP) levels in the spinal cords of very old rats are less than the levels in younger rats (Bergman et al., 1996). After injury to a peripheral nerve in young rats, immunoreactivity (ir) to the SP receptor, NK–1 (neurokinin-1), increases in the spinal cord ipsilateral to the injury and the increases are correlated with the development of thermal hyperalgesia (Goff et al., 1998). Thus we postulated that aged rats might display an increased sensitivity to thermal stimulation before peripheral nerve injury and that they might respond differently to injury than do younger rats. To test this hypothesis, we used the Bennett and Xie model (1988) of chronic constriction injury (CCI) to the sciatic nerve to induce a neuropathic pain condition. We investigated the effect of age on changes in NK-1 ir in superficial layers of the dorsal horn and on numbers of NK ir cells in deeper laminae at the L4-L5 levels of the spinal cord after CCI. NK-1 receptors were tagged immunohistochemically and their distribution quantified by use of computer-assisted image analysis. NK-1 ir changes were related to alterations in thermal and tactile sensitivity that developed after CCI in young, mature and aged (4-6, 14-16, and 24-26 months) Fischer F344 BNF1 hybrid rats. No differences in thermal or tactile sensitivity of young and aged rats were seen in the absence of nerve injury. After injury, aged rats developed thermal hyperalgesia and tactile allodynia more slowly than did the younger rats. NK-1 receptor ir and numbers of NK-1 ir cells in the dorsal horn increased with time post-injury in all three groups. NK-1 ir increases were correlated with the development of thermal hyperalgesia in those rats that displayed hyperalgesia. However, some rats developed an increased threshold to thermal stimuli (analgesia) and that also was correlated with increases in NK-1 ir. Thus NK-1 ir extent, while correlated with thermal sensitivity in the absence of injury, is not a specific marker for disturbances in one particular sensory modality; rather it increases with peripheral nerve injury per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号