首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early cretaceous fossil evidence for angiosperm evolution   总被引:1,自引:0,他引:1  
Morphological, stratigraphic, and sedimentological analyses of Early Cretaceous pollen and leaf sequences, especially from the Potomac Group of the eastern United States, support the concept of a Cretaceous adaptive radiation of the angiosperms and suggest pathways of their initial ecological and systematic diversification. The oldest acceptable records of angiosperms are rare monosulcate pollen grains with columellar exine structure from probable Barremian strata of England, equatorial Africa, and the Potomac Group, and small, simple, pinnately veined leaves with several orders of reticulate venation from the Neocomian of Siberia and the basal Potomac Group. The relatively low diversity and generalized character of these fossils and the subsequent coherent pattern of morphological diversification are consistent with a monophyletic origin of the angiosperms not long before the Barremian. PatuxentArundel floras (Barremian-early Albian?) of the Potomac Group include some pollen and leaves with monocotyledonous features as well as dicotyledonous forms. Patuxent angiosperm pollen is strictly monosulcate and has exine sculpture indicative of insect pollination. Rare Patuxent-Arundel angiosperm leaves are generally small, have disorganized venation, and are largely restricted to sandy stream margin lithofacies; the largest are comparable to and may include ancestors of woody Magnoliidae adapted to understory conditions. Patapsco floras (middle to late Albian?) contain rapidly diversifying tricolpate pollen and several new complexes of locally abundant angiosperm leaves. Ovate-cordate and peltate leaves in clayey pond lithofacies may includeancestors of aquatic Nymphaeales and Nelumbonales. Pinnatifid and later pinnately compound leaves with increasingly regular venation which are abundant just above rapid changes in sedimentation are interpreted as early successional “weed trees” transitional to but more primitive than the modern subclass Rosidae. Apparently related palmately lobed, palinactinodromous leaves which develop rigidly percurrent tertiary venation and become abundant in uppermost Potomac stream margin deposits (latest Albian-early Cenomanian?) are interpreted as riparian trees ancestral to the order Hamamelidales. Comparisons of dated pollen floras of other regions indicate that one major subgroup of angiosperms, tricolpate-producing dicots (i.e., excluding Magnoliidae of Takhtajan) originated in the Aptian of Africa-South America at a time of increasing aridity and migrated poleward into Laurasia and Australasia. However, the earlier (Barremian) monosulcate phase of the angiosperm record is represented equally in Africa-South America and Laurasia before marked climatic differentiation between the two areas. These trends are considered consistent with the hypothesis that the angiosperms originated as small-leafed shrubs of seasonally arid environments, and underwent secondary expansion of leaf area and radiated into consecutively later successional stages and aquatic habitats after entering mesic regions as riparian “weeds,” as opposed to the concept that they arose as trees of mesic forest environments.  相似文献   

2.
3.
Oxygen isotope analyses of Tertiary and Cretaceous planktic foraminifera indicate that species have been stratified with respect to depth in the water column at least since Albian time. There is a relationship between morphology and depth habitat. Species with globigerine morphology have consistently occupied shallower depths than have species with globorotalid morphology. Biserially arranged species occupied both shallow and deep levels in the water column. On the average, it appears that ancient species with shallow habitats have been more susceptible to dissolution and have been preserved less well than species dwelling in deeper habitats. This relationship is similar to that observed for Recent planktic foraminifera. Comparison of carbon isotope ratios of adult and juvenile forms indicates that either the source of the carbon found in the shell or the carbon isotopic fractionations which occur during calcite secretion change during the development of individual foraminifera. The carbon isotopic ratios do not provide a reliable means for reconstructing the depth habitats of ancient species. Temperature-depth profiles for tropical Tertiary oceans have been reconstructed from the isotopic temperatures of planktic and benthic foraminifera. The vertical thermal structure of Oligocene oceans resembled that of modern oceans most closely. Those of Paleocene and Maastrichtian times differed most from that of modern oceans.  相似文献   

4.
A molecular clock based on ITS sequence data from the lichen genera Biatora and Phyllopsora is calibrated with the help of paleoclimatic data and evidence of forest history. The clock indicates that diversification within Biatora started as early as in the Late Cretaceous and took place during periods of climatic cooling, when new types of forest evolved and spread in the Northern Hemisphere. Arctic-alpine species of the genus appear to be of considerable age, dating back to the Late Eocene-Oligocene climatic cooling. By using calibrated phylogenies of epiphytic lichens it may become possible to date many paleoenvironmental events, for which little fossil evidence exists.  相似文献   

5.
6.
Expression of bone morphogenetic proteins during membranous bone healing   总被引:16,自引:0,他引:16  
For the reconstructive plastic surgeon, knowledge of the molecular biology underlying membranous fracture healing is becoming increasingly vital. Understanding the complex patterns of gene expression manifested during the course of membranous fracture repair will be crucial to designing therapies that augment poor fracture healing or that expedite normal osseous repair by strategic manipulation of the normal course of gene expression. In the current study, we present a rat model of membranous bone repair. This model has great utility because of its technical simplicity, reproducibility, and relatively low cost. Furthermore, it is a powerful tool for analysis of the molecular regulation of membranous bone repair by immunolocalization and/or in situ hybridization techniques. In this study, an osteotomy was made within the caudal half of the hemimandible, thus producing a stable bone defect without the need for external or internal fixation. The healing process was then catalogued histologically in 28 Sprague-Dawley rats that were serially killed at 1, 2, 3, 4, 5, 6, and 8 weeks after operation. Furthermore, using this novel model, we analyzed, within the context of membranous bone healing, the temporal and spatial expression patterns of several members of the bone morphogenetic protein (BMP) family, known to be critical regulators of cells of osteoblast lineage. Our data suggest that BMP-2/-4 and BMP-7, also known as osteogenic protein-1 (OP-1), are expressed by osteoblasts, osteoclasts, and other more primitive mesenchymal cells within the fracture callus during the early stages of membranous fracture healing. These proteins continue to be expressed during the process of bone remodeling, albeit less prominently. The return of BMP-2/-4 and OP-1 immunostaining to baseline intensity coincides with the histological appearance of mature lamellar bone. Taken together, these data underscore the potentially important regulatory role played by the bone morphogenetic proteins in the process of membranous bone repair.  相似文献   

7.

Background  

Bone morphogenetic proteins (BMPs) contribute to many different aspects of development including mesoderm formation, heart development, neurogenesis, skeletal development, and axis formation. They have previously been recognized only as secreted growth factors, but the present study detected Bmp2, Bmp4, and Gdf5/CDMP1 in the nuclei of cultured cells using immunocytochemistry and immunoblotting of nuclear extracts.  相似文献   

8.
The role of bone morphogenetic proteins in endochondral bone formation   总被引:5,自引:0,他引:5  
Bone morphogenetic proteins (BMPs) were originally identified as proteins capable of inducing endochondral bone formation when implanted at extraskeletal sites. BMPs have diverse biological activities during early embryogenesis and various aspects of organogenesis. BMPs bind to BMP receptors on the cell surface, and these signals are transduced intracellularly by Smad proteins. BMP signal pathways can be inhibited by both extra- and intracellular mechanisms. As for skeletal development, genetic studies suggest that BMPs are skeletal mesoderm inducers. Recent studies of tissue-specific activation and inactivation of BMP signals have revealed that BMP signals control proliferation and differentiation of chondrocytes, differentiation of osteoblasts and bone quality. These findings may contribute not only to understanding of bone biology and pathology, but also to improvement of the clinical efficacy of BMPs.  相似文献   

9.
10.
Subcutaneous implantation of demineralized bone matrix in allogenic rats induces a sequence of events resulting in de novo formation of cartilage, bone and bone marrow. In the present study endochondral bone formation by demineralized porcine matrix was studied and compared with the rat bone matrix. Endochondral bone formation was induced by 4M guanidine hydrochloride fraction IV (less than 50,000 daltons) of Sepharose CL-6B gel filtration but not by whole extract or by demineralized porcine bone matrix. Sephacryl S-200 gel filtration of the osteoinductive proteins of fraction IV showed the Porcine osteoinductive factor to be associated with protein fraction III (less than 20,000 daltons) whereas the rat with fraction II (between 20,000 and 30,000 daltons) of the chromatographic profile indicating an apparent difference in molecular weight of the osteoinductive factors between these two species.  相似文献   

11.
12.
Quantum advances have recently been made in the understanding of the regulation of cartilage and bone differentiation through the identification, purification, genetic cloning and expression of recombinant bone morphogenetic proteins. Bone morphogenetic proteins are a family of pleiotropic differentiation factors with actions on chemotaxis, mitosis, initiation and promotion of chondrogenic and osteogenic phenotypes. They bind extracellular matrix components, heparin and type IV collagen and initiate bone repair. The cascade of cartilage and bone differentiation consists of several continuous phases: initiation, promotion, maintenance and termination.  相似文献   

13.
Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic.  相似文献   

14.
15.
16.
Further evidence on the formation of poliovirus proteins   总被引:85,自引:0,他引:85  
  相似文献   

17.
A North Temperate Realm, characterized by Belemnitellidae Pavlov, and a South Temperate Realm, characterized by Dimitobelidae WHITEHOUSE, existed throughout the Late Cretaceous, while Tethyan belemnites belonging to Belemnopseidae Naef existed only in the Cenomanian and disappeared afterwards. The North Temperate Realm may be subdivided into North European and North American Provinces. The latter province includes Greenland, Canada, the Western Interior Region of North America, and the Atlantic and Gulf coasts of North America. The belemnites from the North American Province, consisting of populations of the generaActinocamax Miller andBelemnitella d’Orbigny, are closely related to the belemnites of the North European Province and appear to have migrated from this province to North America via Greenland and Arctic Canada. The North European Province extends from Ireland to the Ural Mountains. Belemnites from this province belong to the following genera:Neohibolites Stolley,Parahibolites Stolley,Belemnocamax Crick,Actinocamax Miller,Belemnellocamax Naidin,Gonioteuthis Bayle,Belemnitella d’Orbigny,Belemnella Nowak, andFusiteuthis Kongiel. Two subprovinces within the North European Province have been recognized: the Central European and Central Russian Subprovinces. These subprovinces are well-defined in the late Coniacian-Early Campanian and are characterized by theGonioteuthis stock andBelemnitella stock, respectively. The two subprovinces are less distinct in other periods of the Late Cretaceous and may disappear completely.  相似文献   

18.
Bone resorption through osteocytic activity already recognized in all classes of Vertebrates, has been demonstrated in fragments of long bones from a non-identified reptile found in an Upper Cretaceous rock formation in Dinosaur National Park, Patricia, Alberta.  相似文献   

19.
It has long been accepted that the adaptive radiation of modern placental mammals, like that of modern birds, did not begin until after the Cretaceous/Tertiary (K/T) boundary 65 million years (Ma) ago, following the extinction of the dinosaurs. The first undoubted fossil relatives of modern primates appear in the record 55 Ma ago. However, in agreement with evidence from molecular phylogenies calibrated with dates from denser parts of the fossil record, a statistical analysis of the primate record allowing for major gaps now indicates a Cretaceous origin of euprimates 80-90 Ma ago. If this interpretation is correct, primates overlapped with dinosaurs by some 20 Ma prior to the K/T boundary, and the initial radiation of primates was probably truncated as part of the major extinction event that occurred at the end of the Cretaceous. Following a review of evidence for an early origin of primates, implications of this are discussed with respect to the likely ancestral condition for primates, including a southern continental area of origin and moderately large body size. The known early Tertiary primates are re-interpreted as northern continental offshoots of a 'second wave' of primate evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号