共查询到20条相似文献,搜索用时 0 毫秒
1.
A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants 总被引:3,自引:0,他引:3
Yamamoto MP Shinada H Onodera Y Komaki C Mikami T Kubo T 《The Plant journal : for cell and molecular biology》2008,54(6):1027-1036
In higher plants, male reproductive (pollen) development is known to be disrupted in a class of mitochondrial mutants termed cytoplasmic male sterility (CMS) mutants. Despite the increase in knowledge regarding CMS-encoding genes and their expression, definitive evidence that CMS-associated proteins actually cause pollen disruption is not yet available in most cases. Here we compare the translation products of mitochondria between the normal fertile cytoplasm and the male-sterile I-12CMS(3) cytoplasm derived from wild beets. The results show a unique 12 kDa polypeptide that is present in the I-12CMS(3) mitochondria but is not detectable among the translation products of normal mitochondria. We also found that a mitochondrial open reading frame (named orf129 ) was uniquely transcribed in I-12CMS(3) and is large enough to encode the novel 12 kDa polypeptide. Antibodies against a GST–ORF129 fusion protein were raised to establish that this 12 kDa polypeptide is the product of orf129. ORF129 was shown to accumulate in flower mitochondria as well as in root and leaf mitochondria. As for the CMS-associated protein (PCF protein) in petunia, ORF129 is primarily present in the matrix and is loosely associated with the inner mitochondrial membrane. The orf129 sequence was fused to a mitochondrial targeting pre-sequence, placed under the control of the Arabidopsis apetala3 promoter, and introduced into the tobacco nuclear genome. Transgenic expression of ORF129 resulted in male sterility, which provides clear supporting evidence that ORF129 is responsible for the male-sterile phenotype in sugar beet with wild beet cytoplasm. 相似文献
2.
3.
4.
Ariizumi T Hatakeyama K Hinata K Inatsugi R Nishida I Sato S Kato T Tabata S Toriyama K 《The Plant journal : for cell and molecular biology》2004,39(2):170-181
A novel male-sterile mutant of Arabidopsis thaliana was isolated by means of T-DNA tagging. Pollen abortion of the mutant was evident after microspore release, and pollen grains were completely absent at anthesis. Transmission electron microscope analysis revealed that primexine was coarsely developed, and that although sporopollenin was produced, it was not deposited onto the microspore plasma membrane. The sporopollenin that failed to be deposited aggregated and accumulated within the locule and on the locule wall. Finally, as no exine formation was observed, the mutant was named nef1. The plastoglobuli within the plastids of the tapetum were reduced, and lipid accumulation was considerably decreased. The mutant had a significantly altered leaf chloroplast ultrastructure and showed various growth defects. Lipid analysis revealed that the total lipid content in nef1 was lower than that in the wild type, which indicated that Nef1 was involved in lipid metabolism. Cloning of the full-length Nef1 indicated that the gene encodes a novel plant protein of 1123 amino acids with limited sequence similarities to membrane proteins or transporter-like proteins, and the NEF1 is predicted to be a plastid integral membrane protein. Motif analysis revealed that NEF1 contains prokaryotic membrane lipoprotein lipid attachment sites that are involved in maintaining cell envelope integrity. It is predicted that the Nef1 encodes a membrane protein that maintains the envelope integrity in the plastids. 相似文献
5.
Julien Spielmann Nathalie Detry Nomie Thibaut Alice Jadoul Marie Schloesser Patrick Motte Claire Prilleux Marc Hanikenne 《Plant, cell & environment》2022,45(1):206-219
Metallic micronutrients are essential throughout the plant life cycle. Maintaining metal homeostasis in plant tissues requires a highly complex and finely tuned network controlling metal uptake, transport, distribution and storage. Zinc and cadmium hyperaccumulation, such as observed in the model plant Arabidopsis halleri, represents an extreme evolution of this network. Here, non-ectopic overexpression of the A. halleri ZIP6 (AhZIP6) gene, encoding a zinc and cadmium influx transporter, in Arabidopsis thaliana enabled examining the importance of zinc for flower development and reproduction. We show that AhZIP6 expression in flowers leads to male sterility resulting from anther indehiscence in a dose-dependent manner. The sterility phenotype is associated to delayed tapetum degradation and endothecium collapse, as well as increased magnesium and potassium accumulation and higher expression of the MHX gene in stamens. It is rescued by the co-expression of the zinc efflux transporter AhHMA4, linking the sterility phenotype to zinc homeostasis. Altogether, our results confirm that AhZIP6 is able to transport zinc in planta and highlight the importance of fine-tuning zinc homeostasis in reproductive organs. The study illustrates how the characterization of metal hyperaccumulation mechanisms can reveal key nodes and processes in the metal homeostasis network. 相似文献
6.
Anther dehiscence is very important for pollen maturation and release.The mutants of anther dehiscence in rice (Oryza sativa L.) arefew,and related research remains poor.A male sterility mutant of anther dehiscence in advance,add(t),has been found in Minghui 63 and its sterility is not sensitive to thermo-photo.To learn the character of sterilization and the function of the add(t) gene,the morphological and cytological studies on the anther and pollen,the ability of the pistil being fertilized,inheritance of the mutant,and mapping of add(t)gene have been conducted.The anther size is normal but the color is white in the mutant against the natural yellow in the wild-type.The pollen is malformed,unstained,and small in the KI-I2 solution.The anther dehiscence is in advance at the bicellular pollen stage.A crossing test indicated that the grain setting ratio of the add(t) is significantly lower than that of the CMS line 2085A.The ability of the pistil being fertilized is most probably decreased by the add(t) gene.The male sterility is controlled by a single recessive gene of add(t).This gene is mapped between the markers of R02004 (InDel) and RM300 (SSR) on chromosome 2,and the genetic distance from the add(t) gene to these markers is 0.78 cM and 4.66 cM,respectively. 相似文献
7.
C. Halldén T. Bryngelsson N. O. Bosemark 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1988,75(4):561-568
Summary Mitochondrial (mt) and chloroplast (ct) DNAs from sugar beet carrying normal fertile and different cytoplasmic male sterile (cms) cytoplasms were compared by restriction analysis and for the occurrence of minicircles. One of the cms materials had the Owen cms cytoplasm currently used for hybrid production in sugar beet; the other three cms materials were derived from wild Beta beets. The mtDNAs from two of the latter cms types (C 7051, C 8640) differed from both the Owen and the fertile cytoplasms in fragment patterns seen after restriction enzyme analysis and in minicircle composition. The third cms type (C 8684) differed from the Owen cytoplasm in mini-circle composition, but restriction enzyme analysis revealed no differences. The presence of the different minicircles was confirmed by Southern hybridization using minicircle-specific clones. All bands hybridized as predicted by gel electrophoresis except a band in the cms type C 8640, which migrated in a similar manner as the c.c.c. form of the a minicircle. This band hybridized only faintly to a minicircle a-specific probe and could be removed by treatment with nuclease S1. In contrast to the large mtDNA variation, restriction analysis of ctDNA detected little variation between cytoplasms. The molecular characterization of the new sources of cms supports the results of previous crossings. Two of the cytoplasms are not only of independent origin, but are also most likely functionally different and thus may be of value in future production of hybrid sugar beet varieties. 相似文献
8.
ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize 下载免费PDF全文
Hua Zhang Mingming Wang Yanqing Huo Fengge Cao Li Zhao Huabang Chen 《The Plant journal : for cell and molecular biology》2017,90(1):96-110
Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum‐specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate‐shaped compared with the three‐dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild‐type. The wild‐type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2‐Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co‐localized with the endoplasmic reticulum (ER) signal. RNA‐Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize. 相似文献
9.
Kinya Toriyama 《Plant Biotechnology》2021,38(3):285
Cytoplasmic male sterility (CMS) is a maternally inherited trait that causes dysfunctions in pollen and anther development. CMS is caused by the interaction between nuclear and mitochondrial genomes. A product of a CMS-causing gene encoded by the mitochondrial genome affects mitochondrial function and the regulation of nuclear genes, leading to male sterility. In contrast, the RESTORER OF FERTILITY gene (Rf gene) in the nuclear genome suppresses the expression of the CMS-causing gene and restores male fertility. An alloplasmic CMS line is often bred as a result of nuclear substitution, which causes the removal of functional Rf genes and allows the expression of a CMS-causing gene in mitochondria. The CMS/Rf system is an excellent model for understanding the genetic interactions and cooperative functions of mitochondrial and nuclear genomes in plants, and is also an agronomically important trait for hybrid seed production. In this review article, pollen and anther phenotypes of CMS, CMS-associated mitochondrial genes, Rf genes, and the mechanism that causes pollen abortion and its agronomical application for rice are described. 相似文献
10.
This study examines the role of c- jun N-terminal kinase (JNK) in mitochondrial signaling and bioenergetics in primary cortical neurons and isolated rat brain mitochondria. Exposure of neurons to either anisomycin (an activator of JNK/p38 mitogen-activated protein kinases) or H2 O2 resulted in activation (phosphorylation) of JNK (mostly p46JNK1 ) and its translocation to mitochondria. Experiments with mitochondria isolated from either rat brain or primary cortical neurons and incubated with proteinase K revealed that phosphorylated JNK was associated with the outer mitochondrial membrane; this association resulted in the phosphorylation of the E1α subunit of pyruvate dehydrogenase, a key enzyme that catalyzes the oxidative decarboxylation of pyruvate and that links two major metabolic pathways: glycolysis and the tricarboxylic acid cycle. JNK-mediated phosphorylation of pyruvate dehydrogenase was not observed in experiments carried out with mitoplasts, thus suggesting the requirement of intact, functional mitochondria for this effect. JNK-mediated phosphorylation of pyruvate dehydrogenase was associated with a decline in its activity and, consequently, a shift to anaerobic pyruvate metabolism: the latter was confirmed by increased accumulation of lactic acid and decreased overall energy production (ATP levels). Pyruvate dehydrogenase appears to be a specific phosphorylation target for JNK, for other kinases, such as protein kinase A and protein kinase C did not elicit pyruvate dehydrogenase phosphorylation and did not decrease the activity of the complex. These results suggest that JNK mediates a signaling pathway that regulates metabolic functions in mitochondria as part of a network that coordinates cytosolic and mitochondrial processes relevant for cell function. 相似文献
11.
The oxidation of pyruvate is mediated by the pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12 and EC 1.6.4.3) whose catalytic activity is influenced by phosphorylation and by product inhibition. 2-Oxoglutarate and 3-hydroxybutyrate are readily utilized by brain mitochondria and inhibit pyruvate oxidation. To further elucidate the regulatory behavior of brain PDHC, the effects of 2-oxoglutarate and 3-hydroxyburyrate on the flux of PDHC (as determined by [1-14C]pyruvate decarboxylation) and the activation (phosphorylation) state of PDHC were determined in isolated, non-synaptic cerebro-cortical mitochondria in the presence or absence of added adenine nucleotides (ADP or ATP). [1-14C]Pyruvate decarboxylation by these mitochondria is consistently depressed by either 3-hydroxybutyrate or 2-oxoglutarate in the presence of ADP when mitochondrial respiration is stimulated. In the presence of exogenous ADP, 3-hydroxybutyrate inhibits pyruvate oxidation mainly through the phosphorylation of PDHC, since the reduction of the PDHC flux parallels the depression of PDHC activation state under these conditions. On the other hand, in addition to the phosphorylation of PDHC, 2-oxoglutarate may also regulate pyruvate oxidation by product inhibition of PDHC in the presence of 0.5 mM pyruvate plus ADP or 5 mM pyruvate alone. This conclusion is based upon the observation that 2-oxoglutarate inhibits [1-14C]pyruvate decarboxylation to a much greater extent than that predicted from the PDHC activation state (i.e. catalytic capacity) alone. In conjunction with the results from our previous study (Lai, J. C. K. and Sheu, K.-F. R. (1985) J. Neurochem. 45, 1861–1868), the data of the present study are consistent with the notion that the relative importance of the various mechanisms that regulate brain and peripheral tissue PDHCs shows interesting differences. 相似文献
12.
The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes 总被引:12,自引:0,他引:12
Cytoplasmic male sterility (CMS) in higher plants has been mainly studied in cultivated species. In most cases, pollen abortion is linked to the presence of an additional mitochondrial polypeptide leading to organelle dysfunction in reproductive tissues. In wild beet, both CMS and hermaphrodite plants coexist in natural populations. The G cytoplasm is widely distributed along the Western European coast, and previous genetic studies have demonstrated that this cytoplasm confers male sterility in beet. In the present study, we have identified two mutations of G mitochondrial genes, each of which results in the production of a respiratory chain complex subunit with an altered molecular weight; the NAD9 subunit has a C-terminal extension while the COX2 subunit has a truncated C-terminus. NADH dehydrogenase activity was unchanged in leaves, but cytochrome c oxidase activity was reduced by 50%. Moreover, Western blot analyses revealed that alternative oxidase was more abundant in male sterile G plants than in a fertile control (Nv), suggesting that this alternative pathway might compensate for the cytochrome c oxidase deficiency. Implications of respiratory chain changes and a putative link with CMS are discussed. 相似文献
13.
Ribarits A Mamun AN Li S Resch T Fiers M Heberle-Bors E Liu CM Touraev A 《Plant biotechnology journal》2007,5(4):483-494
Reversible male sterility and doubled haploid plant production are two valuable technologies in F1 -hybrid breeding. F1 -hybrids combine uniformity with high yield and improved agronomic traits, and provide self-acting intellectual property protection. We have developed an F1 -hybrid seed technology based on the metabolic engineering of glutamine in developing tobacco anthers and pollen. Cytosolic glutamine synthetase (GS1) was inactivated in tobacco by introducing mutated tobacco GS genes fused to the tapetum-specific TA29 and microspore-specific NTM19 promoters. Pollen in primary transformants aborted close to the first pollen mitosis, resulting in male sterility. A non-segregating population of homozygous doubled haploid male-sterile plants was generated through microspore embryogenesis. Fertility restoration was achieved by spraying plants with glutamine, or by pollination with pollen matured in vitro in glutamine-containing medium. The combination of reversible male sterility with doubled haploid production results in an innovative environmentally friendly breeding technology. Tapetum-mediated sporophytic male sterility is of use in foliage crops, whereas microspore-specific gametophytic male sterility can be applied to any field crop. Both types of sterility preclude the release of transgenic pollen into the environment. 相似文献
14.
Hatakeyama Katsunori Ishiguro Sumie Okada Kiyotaka Takasaki Takeshi Hinata Kokichi 《Molecular breeding : new strategies in plant improvement》2003,11(4):325-336
Male sterility is widely used for the production of hybrid seeds, but the use of genic male sterility is rather limited because of difficulty in maintaining homozygous male sterile plants. Recently, the DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1) gene, which encodes a phospholipase A1 involved in the first step of the jasmonic acid (JA) biosynthesis pathway, was isolated from a male sterile Arabidopsis mutant. To utilize this gene in Brassica crops, we characterized the BrDAD1 gene, the putative ortholog of DAD1 in Brassica rapa. Out of 25 plants transformed with an antisense gene constructed from the BrDAD1, 3 plants showed a defect of anther dehiscence at the flower bud opening stage and produced inviable pollen. One of the three showed male sterility only, but the other two showed a delay or a lack of flower opening in addition to male sterility. The male sterile and flower-opening phenotypes were rescued by the application of JA as well as linolenic acid. Furthermore, all these characteristics were inherited to the next generation. The present results demonstrate a novel control system for hybrid seed production by the use of nuclear genes. 相似文献
15.
16.
González-Melendi P Uyttewaal M Morcillo CN Hernández Mora JR Fajardo S Budar F Lucas MM 《Journal of experimental botany》2008,59(4):827-838
Ogura cytoplasmic male sterility (CMS) occurs naturally in radishand has been introduced into rapeseed (Brassica napus) by protoplastfusion. As with all CMS systems, it involves a constitutivelyexpressed mitochondrial gene which induces male sterility tootherwise hermaphroditic plants (so they become females) anda nuclear gene named restorer of fertility that restores pollenproduction in plants carrying a sterility-inducing cytoplasm.A correlative approach using light and electron microscopy wasapplied to define what stages throughout development were affectedand the subcellular events leading to the abortion of the developingpollen grains upon the expression of the mitochondrial protein.Three central stages of development (tetrad, mid-microsporeand vacuolate microspore) were compared between fertile, restored,and sterile plants. At each stage observed, the pollen in fertileand restored plants had similar cellular structures and organization.The deleterious effect of the sterility protein expression startedas early as the tetrad stage. No typical mitochondria were identifiedin the tapetum at any developmental stage and in the vacuolatemicrospores of the sterile plants. In addition, some strikingultrastructural alterations of the cell's organization werealso observed compared with the normal pattern of development.The results showed that Ogu-INRA CMS was due to premature celldeath events of the tapetal cells, presumably by an autolysisprocess rather than a normal PCD, which impairs pollen developmentat the vacuolate microspore stage, in the absence of functionalmitochondria. Key words: Brassica napus, cell death, light and electron microscopy, mitochondria, plastids, pollen development, Ogu-INRA cytoplasmic male sterility, transgenic-restored plants, tapetum
Received 30 September 2007; Revised 11 December 2007 Accepted 20 December 2007 相似文献
17.
Christer Halldén Christina Lind Torbjörn Säll Nils Olof Bosemark Bengt O. Bengtsson 《Journal of molecular evolution》1990,31(5):365-372
Summary Chloroplast (ct) and mitochondrial (mt) DNAs from four cytoplasmic male sterile (cms) and 22 normal fertile sugar beet lines and accessions of wild beets from the genusBeta have been compared with restriction analyses and Southern hybridizations. We have used restriction analyses of ctDNA as a phylogenetic marker to confirm the taxonomic relationships between the different cytoplasms. According to the ctDNA data, all four cms cytoplasms belong to the same taxonomic section,Beta. Restriction patterns of ct and mtDNA from fertile accessions produced analogous trees of similarity and showed a close correlation between the organellar DNA diversity and the accepted taxonomic classification of the species studied. However, the mtDNA restriction profiles of the four cms types differed dramatically from each other and from those of all fertile accessions from the genus. No indication of cytoplasmic introgression was found in any of the four investigated cms types. Southern hybridization to mtDNA revealed variant genomic arrangements in the different fertile and cms cytoplasms, indicating that rearrangement of the mitochondrial genome is a common denominator to the different cms systems inBeta. It may, indeed, be a common property to spontaneously occurring cms in all or most species. 相似文献
18.
In Azotobacter vinelandii, the E1 component of pyruvate dehydrogenase complex (PDHE1) is proposed to be a key regulatory protein in an oxidative stress management system that responds to superoxide. This proposal was tested by constructing an A. vinelandii mutant that had a disruption of aceE gene encoding PDHE1. This mutant exhibited wild-type exponential growth and a normal response to oxidative stress induced by paraquat. Electrophoretic mobility-shift assays revealed that a protein previously shown to bind to a paraquat-activatable DNA promoter was still present in the extract prepared from the mutant, implying that the protein cannot be PDHE1. These observations strongly contradict the previous claim that PDHE1 is a DNA-binding protein that is directly involved in the A. vinelandii oxidative stress-regulatory system. 相似文献
19.
The pyruvate dehydrogenase multi-enzyme complex is the main source of acetyl-CoA formation in the plastids of plants and is composed of multiple copies of four different subunits, E1, E1, E2, and E3. A T-DNA insertion into the gene for the plastidic E2 (dihydrolipoyl acetyltransferase) subunit, plE2, of the complex in Arabidopsis destroys the expression of that gene. The resulting mutation has no apparent phenotype in the heterozygous state, but the homozygous mutation is lethal. Haploid sperm and eggs that contain only the disrupted plE2 gene function normally resulting in the formation of an embryo that is homozygous for the mutation. This embryo only develops to an early stage before the development arrests resulting in an early embryo-lethal phenotype. While the mutation could not be complemented with the cDNA for the plE2 gene under control of the 35S, the AtSERK1, or the napin promoter, it could be complemented using the endogenous plE2 promoter to drive expression of the plE2 cDNA. This verifies the essential nature of the plastidic pyruvate dehydrogenase complex and its role in embryo formation. 相似文献
20.
Mitochondrial DNA (mtDNA) was isolated from over 100 different maize nucleo-cytoplasmic combinations. DNA preparations were
assayed for the presence of the 1.94kb mitochondrial plasmid by agarose gel electrophoresis and hybridization to a recombinant
clone of the plasmid. The plasmid was present in all tested inbreds which carried N, male fertile, cytoplasm or the cytoplasmically
male sterile (cms) groups,cms-T andcms-C. However, members of thecms-S group differed with respect to the presence of the plasmid. Cytoplasms I, J and S possessed the plasmid, whereas cytoplasms
B, CA, D, G, H, IA, ME, ML, PS, RD and VG did not.Cms-S group lines which had spontaneously reverted to fertility (nuclear and cytoplasmic revertants) did not exhibit a concomitant
change in 1.94kb plasmid levels, although all such lines showed the previously reported alteration in levels of the linear
mtDNAs, S1 and S2. The presence or absence of the plasmid was not correlated with (i) frequency of reversion to fertility,
(ii) the degree of male sterility expressed, (iii) the presence or absence of standard nuclear restorer to fertility genes
and (iv) nuclear genotype. Latin American races carrying RU cytoplasm possessed the plasmid, as did sweet corn varieties.
The relevance of the data tocms and evolution of thecms-S group is discussed. 相似文献